The Use of AI-Robotic Systems for Scientific Discovery
- URL: http://arxiv.org/abs/2406.17835v1
- Date: Tue, 25 Jun 2024 15:33:01 GMT
- Title: The Use of AI-Robotic Systems for Scientific Discovery
- Authors: Alexander H. Gower, Konstantin Korovin, Daniel BrunnsÄker, Filip Kronström, Gabriel K. Reder, Ievgeniia A. Tiukova, Ronald S. Reiserer, John P. Wikswo, Ross D. King,
- Abstract summary: In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science.
We argue that the scientific method shares an analogy with active learning.
- Score: 34.54807102377927
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic.
Related papers
- Genesis: Towards the Automation of Systems Biology Research [32.67169575874115]
We are developing a next generation robot scientist called Genesis.
We aim to demonstrate that an area of science can be investigated using robot scientists unambiguously faster, and at lower cost, than with human scientists.
Here we report progress on the Genesis project.
arXiv Detail & Related papers (2024-08-20T09:40:43Z) - The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
This paper presents the first comprehensive framework for fully automatic scientific discovery.
We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, and describes its findings.
In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community.
arXiv Detail & Related papers (2024-08-12T16:58:11Z) - Automated Scientific Discovery: From Equation Discovery to Autonomous
Discovery Systems [5.7923858184309385]
The paper surveys automated scientific discovery, from equation discovery and symbolic regression to autonomous discovery systems and agents.
We will present closed-loop scientific discovery systems, starting with the pioneering work on the Adam system up to current efforts in fields from material science to astronomy.
The maximal level, level five, is defined to require no human intervention at all in the production of scientific knowledge.
arXiv Detail & Related papers (2023-05-03T16:35:41Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - A Low-Cost Robot Science Kit for Education with Symbolic Regression for
Hypothesis Discovery and Validation [15.72286703649173]
Next generation of physical science involves robot scientists - autonomous physical science systems capable of experimental design, execution, and analysis in a closed loop.
To build and use these systems, the next generation workforce requires expertise in diverse areas including ML, control systems, measurement science, materials synthesis, decision theory, among others.
We present the next generation in science education, a kit for building a low-cost autonomous scientist.
arXiv Detail & Related papers (2022-04-08T17:25:28Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
We discuss how neuroscience findings open up opportunities to improve current estimation and control algorithms in robotics.
This paper summarizes some experiments and lessons learned from developing such a computational model on real embodied platforms.
arXiv Detail & Related papers (2021-05-10T10:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.