Automated Scientific Discovery: From Equation Discovery to Autonomous
Discovery Systems
- URL: http://arxiv.org/abs/2305.02251v1
- Date: Wed, 3 May 2023 16:35:41 GMT
- Title: Automated Scientific Discovery: From Equation Discovery to Autonomous
Discovery Systems
- Authors: Stefan Kramer, Mattia Cerrato, Sa\v{s}o D\v{z}eroski, Ross King
- Abstract summary: The paper surveys automated scientific discovery, from equation discovery and symbolic regression to autonomous discovery systems and agents.
We will present closed-loop scientific discovery systems, starting with the pioneering work on the Adam system up to current efforts in fields from material science to astronomy.
The maximal level, level five, is defined to require no human intervention at all in the production of scientific knowledge.
- Score: 5.7923858184309385
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The paper surveys automated scientific discovery, from equation discovery and
symbolic regression to autonomous discovery systems and agents. It discusses
the individual approaches from a "big picture" perspective and in context, but
also discusses open issues and recent topics like the various roles of deep
neural networks in this area, aiding in the discovery of human-interpretable
knowledge. Further, we will present closed-loop scientific discovery systems,
starting with the pioneering work on the Adam system up to current efforts in
fields from material science to astronomy. Finally, we will elaborate on
autonomy from a machine learning perspective, but also in analogy to the
autonomy levels in autonomous driving. The maximal level, level five, is
defined to require no human intervention at all in the production of scientific
knowledge. Achieving this is one step towards solving the Nobel Turing Grand
Challenge to develop AI Scientists: AI systems capable of making Nobel-quality
scientific discoveries highly autonomously at a level comparable, and possibly
superior, to the best human scientists by 2050.
Related papers
- The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
This paper presents the first comprehensive framework for fully automatic scientific discovery.
We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, and describes its findings.
In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community.
arXiv Detail & Related papers (2024-08-12T16:58:11Z) - Explain the Black Box for the Sake of Science: the Scientific Method in the Era of Generative Artificial Intelligence [0.9065034043031668]
The scientific method is the cornerstone of human progress across all branches of the natural and applied sciences.
We argue that human complex reasoning for scientific discovery remains of vital importance, at least before the advent of artificial general intelligence.
Knowing what data AI systems deemed important to make decisions can be a point of contact with domain experts and scientists.
arXiv Detail & Related papers (2024-06-15T08:34:42Z) - "Turing Tests" For An AI Scientist [0.0]
This paper proposes a "Turing test for an AI scientist" to assess whether an AI agent can conduct scientific research independently.
We propose seven benchmark tests that evaluate an AI agent's ability to make groundbreaking discoveries in various scientific domains.
arXiv Detail & Related papers (2024-05-22T05:14:27Z) - Drivers and Barriers of AI Adoption and Use in Scientific Research [0.0]
We study the integration of AI in scientific research, focusing on the human capital of scientists and the external resources available within their network of collaborators and institutions.
Our results suggest that AI is pioneered by domain scientists with a taste for exploration' and who are embedded in a network rich of computer scientists, experienced AI scientists and early-career researchers.
arXiv Detail & Related papers (2023-12-15T14:49:13Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery
through Sophisticated AI System Technologies [116.09762105379241]
DeepSpeed4Science aims to build unique capabilities through AI system technology innovations.
We showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.
arXiv Detail & Related papers (2023-10-06T22:05:15Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
New area of research known as AI for science (AI4Science)
Areas aim at understanding the physical world from subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales.
Key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods.
arXiv Detail & Related papers (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.