論文の概要: ET tu, CLIP? Addressing Common Object Errors for Unseen Environments
- arxiv url: http://arxiv.org/abs/2406.17876v1
- Date: Tue, 25 Jun 2024 18:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 15:37:10.241137
- Title: ET tu, CLIP? Addressing Common Object Errors for Unseen Environments
- Title(参考訳): ET tu, CLIP? 見えない環境における共通オブジェクトエラーに対処する
- Authors: Ye Won Byun, Cathy Jiao, Shahriar Noroozizadeh, Jimin Sun, Rosa Vitiello,
- Abstract要約: ALFREDタスクにおけるモデル一般化を強化するために、事前訓練されたCLIPエンコーダを使用する簡単な方法を提案する。
CLIPがビジュアルエンコーダを置き換える以前の文献とは対照的に、補助オブジェクト検出の目的を通じて追加モジュールとしてCLIPを使用することを提案する。
- 参考スコア(独自算出の注目度): 0.2714641498775158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a simple method that employs pre-trained CLIP encoders to enhance model generalization in the ALFRED task. In contrast to previous literature where CLIP replaces the visual encoder, we suggest using CLIP as an additional module through an auxiliary object detection objective. We validate our method on the recently proposed Episodic Transformer architecture and demonstrate that incorporating CLIP improves task performance on the unseen validation set. Additionally, our analysis results support that CLIP especially helps with leveraging object descriptions, detecting small objects, and interpreting rare words.
- Abstract(参考訳): ALFREDタスクにおけるモデル一般化を強化するために、事前訓練されたCLIPエンコーダを使用する簡単な方法を提案する。
CLIPがビジュアルエンコーダを置き換える以前の文献とは対照的に、補助オブジェクト検出の目的を通じて追加モジュールとしてCLIPを使用することを提案する。
提案手法を最近提案したEpsodic Transformerアーキテクチャ上で検証し、CLIPを組み込むことで、未確認の検証セット上でのタスク性能が向上することを示す。
さらに,この分析結果は,CLIPが特にオブジェクト記述の活用,小さなオブジェクトの検出,稀な単語の解釈に有効であることを示す。
関連論文リスト
- Quantifying and Enabling the Interpretability of CLIP-like Models [19.459369149558405]
本稿では,OpenAIとOpenCLIPの6種類のCLIPモデルについて検討する。
我々のアプローチは、TEXTSPANアルゴリズムとコンテキスト内学習を用いて、個々の注意を特定の特性に分解することから始まります。
以上の結果から,より大型のCLIPモデルはより小型のCLIPモデルよりも一般的に解釈可能であることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-10T15:19:40Z) - C2P-CLIP: Injecting Category Common Prompt in CLIP to Enhance Generalization in Deepfake Detection [98.34703790782254]
本稿では、カテゴリ共通プロンプトCLIPを紹介し、カテゴリ共通プロンプトをテキストエンコーダに統合し、カテゴリ関連概念をイメージエンコーダに注入する。
提案手法は,テスト中に追加パラメータを導入することなく,元のCLIPと比較して検出精度が12.41%向上した。
論文 参考訳(メタデータ) (2024-08-19T02:14:25Z) - Prototypical Contrastive Learning-based CLIP Fine-tuning for Object
Re-identification [13.090873217313732]
本研究の目的は、オブジェクト再識別(Re-ID)の性能を高めるために、コントラスト言語画像事前学習(CLIP)のような大規模事前学習型視覚言語モデルを適用することである。
私たちはまず,CLIP-ReIDにおけるロールプロンプト学習を分析し,その限界を同定する。
提案手法は,CLIPのイメージエンコーダを直接微調整し,プロトタイプ・コントラッシブ・ラーニング(PCL)の損失を低減し,即時学習の必要性を解消する。
論文 参考訳(メタデータ) (2023-10-26T08:12:53Z) - Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot
Anomaly Localization [63.61093388441298]
対照的な言語-画像事前学習モデルは、ゼロショット視覚認識タスクで有望なパフォーマンスを示した。
本研究では,ゼロショット異常局所化のためのAnoCLIPを提案する。
論文 参考訳(メタデータ) (2023-08-30T10:35:36Z) - DisCLIP: Open-Vocabulary Referring Expression Generation [37.789850573203694]
大規模ビジュアル・セマンティック・モデルであるCLIPを用いてLCMを誘導し、画像中のターゲット概念の文脈記述を生成する。
本研究では、シーン内の記述対象を正確に識別する受信機モデルの能力を評価することにより、生成されたテキストの品質を測定する。
本結果は,事前学習した視覚意味論モデルを用いて,高品質な文脈記述を生成する可能性を強調した。
論文 参考訳(メタデータ) (2023-05-30T15:13:17Z) - Label Words are Anchors: An Information Flow Perspective for
Understanding In-Context Learning [77.7070536959126]
大規模言語モデル(LLM)の有望な能力としてインコンテキスト学習(ICL)が出現する
本稿では,情報フローレンズを用いたICLの動作機構について検討する。
本稿では,ICL性能向上のためのアンカー再重み付け手法,推論の高速化のための実演圧縮手法,GPT2-XLにおけるICLエラーの診断のための解析フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T15:26:20Z) - HOICLIP: Efficient Knowledge Transfer for HOI Detection with
Vision-Language Models [30.279621764192843]
人間-物体相互作用(Human-Object Interaction、HOI)は、人-物体のペアを局所化し、その相互作用を認識することを目的としている。
対照的な言語-画像事前学習(CLIP)は、HOI検出器に先立って相互作用を提供する大きな可能性を示している。
本稿では,CLIPから事前知識を効率的に抽出し,より優れた一般化を実現する新しいHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T07:54:54Z) - CLIP-guided Prototype Modulating for Few-shot Action Recognition [49.11385095278407]
この研究は、CLIPの強力なマルチモーダル知識を伝達して、不正確なプロトタイプ推定問題を緩和することを目的としている。
本稿では,CLIP-FSAR(CLIP-FSAR)と呼ばれるCLIP誘導型プロトタイプ変調フレームワークについて述べる。
論文 参考訳(メタデータ) (2023-03-06T09:17:47Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
対照的に、CLIP(Contrastive Language- Image Pre-Training)は、オープンボキャブラリゼロショット画像認識において画期的な進歩を遂げた。
DenseCLIP+はSOTAトランスダクティブなゼロショットセマンティックセグメンテーション法を大きなマージンで上回る。
我々の発見は、DenseCLIPが高密度予測タスクの信頼性の高い新たな監視源となることを示唆している。
論文 参考訳(メタデータ) (2021-12-02T09:23:01Z) - End-to-End Object Detection with Transformers [88.06357745922716]
本稿では,オブジェクト検出を直接セット予測問題とみなす新しい手法を提案する。
我々のアプローチは検出パイプラインを合理化し、手作業で設計された多くのコンポーネントの必要性を効果的に除去する。
この新しいフレームワークの主な構成要素は、Detection TRansformerまたはDETRと呼ばれ、セットベースのグローバルな損失である。
論文 参考訳(メタデータ) (2020-05-26T17:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。