CAT: Interpretable Concept-based Taylor Additive Models
- URL: http://arxiv.org/abs/2406.17931v3
- Date: Wed, 31 Jul 2024 00:31:45 GMT
- Title: CAT: Interpretable Concept-based Taylor Additive Models
- Authors: Viet Duong, Qiong Wu, Zhengyi Zhou, Hongjue Zhao, Chenxiang Luo, Eric Zavesky, Huaxiu Yao, Huajie Shao,
- Abstract summary: Generalized Additive Models (GAMs) can explain deep neural networks (DNNs) at the feature level.
GAMs require large numbers of model parameters and are prone to overfitting, making them hard to train and scale.
We propose CAT, a novel interpretable Concept-bAsed Taylor additive model to simply this process.
- Score: 17.73885202930879
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As an emerging interpretable technique, Generalized Additive Models (GAMs) adopt neural networks to individually learn non-linear functions for each feature, which are then combined through a linear model for final predictions. Although GAMs can explain deep neural networks (DNNs) at the feature level, they require large numbers of model parameters and are prone to overfitting, making them hard to train and scale. Additionally, in real-world datasets with many features, the interpretability of feature-based explanations diminishes for humans. To tackle these issues, recent research has shifted towards concept-based interpretable methods. These approaches try to integrate concept learning as an intermediate step before making predictions, explaining the predictions in terms of human-understandable concepts. However, these methods require domain experts to extensively label concepts with relevant names and their ground-truth values. In response, we propose CAT, a novel interpretable Concept-bAsed Taylor additive model to simply this process. CAT does not have to require domain experts to annotate concepts and their ground-truth values. Instead, it only requires users to simply categorize input features into broad groups, which can be easily accomplished through a quick metadata review. Specifically, CAT first embeds each group of input features into one-dimensional high-level concept representation, and then feeds the concept representations into a new white-box Taylor Neural Network (TaylorNet). The TaylorNet aims to learn the non-linear relationship between the inputs and outputs using polynomials. Evaluation results across multiple benchmarks demonstrate that CAT can outperform or compete with the baselines while reducing the need of extensive model parameters. Importantly, it can explain model predictions through high-level concepts that human can understand.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - COCKATIEL: COntinuous Concept ranKed ATtribution with Interpretable
ELements for explaining neural net classifiers on NLP tasks [3.475906200620518]
COCKATIEL is a novel, post-hoc, concept-based, model-agnostic XAI technique.
It generates meaningful explanations from the last layer of a neural net model trained on an NLP classification task.
It does so without compromising the accuracy of the underlying model or requiring a new one to be trained.
arXiv Detail & Related papers (2023-05-11T12:22:20Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
We present Agglomerator, a framework capable of providing a representation of part-whole hierarchies from visual cues.
We evaluate our method on common datasets, such as SmallNORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2022-03-07T10:56:13Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form.
Recent work on explanations through feature importance of approximate linear models has moved from input-level features to features from mid-layer feature maps in the form of concept activation vectors (CAVs)
In this work, we rethink the ACE algorithm of Ghorbani etal., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings.
arXiv Detail & Related papers (2020-06-27T17:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.