論文の概要: Efficient Document Ranking with Learnable Late Interactions
- arxiv url: http://arxiv.org/abs/2406.17968v1
- Date: Tue, 25 Jun 2024 22:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 15:07:42.359936
- Title: Efficient Document Ranking with Learnable Late Interactions
- Title(参考訳): 学習可能な遅延インタラクションを用いた効率的な文書ランク付け
- Authors: Ziwei Ji, Himanshu Jain, Andreas Veit, Sashank J. Reddi, Sadeep Jayasumana, Ankit Singh Rawat, Aditya Krishna Menon, Felix Yu, Sanjiv Kumar,
- Abstract要約: クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年、DEM構造と軽量スコアラを用いて、より好ましいレイテンシ品質のトレードオフを実現するために、遅延相互作用モデルが提案されている。
- 参考スコア(独自算出の注目度): 73.41976017860006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.
- Abstract(参考訳): クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年,DEM構造とクエリと文書トークンの埋め込みに基づく軽量スコアラを用いて,より優れたレイテンシ品質のトレードオフを実現するために遅延相互作用モデルが提案されている。
しかし、これらの軽量スコアラーはしばしば手作りであり、それらの近似能力は理解されていない。さらに、これらのスコアラーは個々の文書トークンの埋め込みにアクセスする必要があり、遅延とストレージの負担が増大する。
本稿では,これらの問題を解決する新しい学習可能な遅延相互作用モデル(LITE)を提案する。
理論的には、LITEは比較的小さな埋め込み次元であっても連続的なスコアリング関数の普遍近似であることが証明される。
LITEは、ドメイン内およびゼロショットのリグレードタスクにおいて、ColBERTのような従来の遅延処理モデルよりも優れている。
例えば、MS MARCOのパスの再評価実験では、LITEはより一般化されたモデルを生成するだけでなく、レイテンシを低くし、ColBERTと比較して0.25倍のストレージを必要とすることが示されている。
関連論文リスト
- Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback [17.986392250269606]
Relevance Feedback (ReDE-RF) による実文書埋め込みについて紹介する。
ReDE-RFは、関連性フィードバックにインスパイアされて、関連性推定タスクとして仮説文書生成を再構成することを提案する。
実験の結果,ReDE-RFは最先端のゼロショット高密度検索手法を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-10-28T17:40:40Z) - Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
判例検索は、ある事実記述の参照として類似した事例を提供することを目的としている。
既存の作業は主に、長いクエリを使ったケース・ツー・ケースの検索に重点を置いている。
データスケールは、既存のデータハングリーニューラルネットワークのトレーニング要件を満たすには不十分である。
論文 参考訳(メタデータ) (2024-10-09T06:26:39Z) - REXEL: An End-to-end Model for Document-Level Relation Extraction and Entity Linking [11.374031643273941]
REXELは文書レベルcIE(DocIE)の共同作業のための高効率かつ高精度なモデルである
同様の環境では、競合する既存のアプローチよりも平均11倍高速です。
速度と精度の組み合わせにより、REXELはWebスケールで構造化された情報を抽出する正確なコスト効率のシステムとなる。
論文 参考訳(メタデータ) (2024-04-19T11:04:27Z) - DSI++: Updating Transformer Memory with New Documents [95.70264288158766]
DSI++は、DSIが新たなドキュメントをインクリメンタルにインデクシングするための継続的な学習課題である。
新たな文書の連続的な索引付けは,それまでの索引付け文書をかなり忘れてしまうことを示す。
文書の擬似クエリをサンプルとして生成メモリを導入し、連続的なインデックス付け中に補足することで、検索タスクの忘れを防止する。
論文 参考訳(メタデータ) (2022-12-19T18:59:34Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
正確で、堅牢で、効率的で、一般化可能で、エンドツーエンドのトレーニングが可能なモデルを提案する。
精度を向上させるために,2つの軽量モジュールを提案する。
DQInitは、インプットからデコーダのクエリを動的に初期化し、複数のデコーダ層を持つものと同じ精度でモデルを実現する。
QAMemは、共有するクエリではなく、それぞれのクエリに別々のメモリ値を割り当てることで、低解像度のフィーチャーマップ上のクエリの識別能力を高めるように設計されている。
論文 参考訳(メタデータ) (2021-05-27T13:51:42Z) - ColBERT: Efficient and Effective Passage Search via Contextualized Late
Interaction over BERT [24.288824715337483]
ColBERTは、ディープLMを効率的な検索に適応させる新しいランキングモデルである。
我々は最近の2つの経路探索データセットを用いてColBERTを広範囲に評価した。
論文 参考訳(メタデータ) (2020-04-27T14:21:03Z) - TwinBERT: Distilling Knowledge to Twin-Structured BERT Models for
Efficient Retrieval [11.923682816611716]
本稿では,効率的な検索のためのTwinBERTモデルを提案する。
クエリとドキュメントをそれぞれ表現するBERTライクなエンコーダがツイン構造化されている。
ドキュメントの埋め込みはオフラインでプリコンパイルされ、メモリにキャッシュされる。
論文 参考訳(メタデータ) (2020-02-14T22:44:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。