Managing Classical Processing Requirements for Quantum Error Correction
- URL: http://arxiv.org/abs/2406.17995v2
- Date: Wed, 27 Nov 2024 15:50:17 GMT
- Title: Managing Classical Processing Requirements for Quantum Error Correction
- Authors: Satvik Maurya, Swamit Tannu,
- Abstract summary: We present a framework to reduce the number of hardware decoders and navigate the compute-performace trade-offs.
We propose efficient decoder scheduling policies that can reduce the number of hardware decoders required to run a program by up to 10X.
- Score: 0.36832029288386137
- License:
- Abstract: Quantum Error Correction requires decoders to process syndromes generated by the error-correction circuits. These decoders must process syndromes faster than they are being generated to prevent a backlog of undecoded syndromes. This backlog can exponentially increase the time required to execute the program, which has resulted in the development of fast hardware decoders that accelerate decoding. Applications utilizing error-corrected quantum computers will require hundreds to thousands of logical qubits and provisioning a hardware decoder for every logical qubit can be very costly. In this work, we present a framework to reduce the number of hardware decoders and navigate the compute-performace trade-offs without sacrificing the performance or reliability of program execution. Through workload-centric characterizations performed by our framework, we propose efficient decoder scheduling policies that can reduce the number of hardware decoders required to run a program by up to 10X. With the proposed framework, scalability can be achieved via decoder virtualization, and individual decoders can be built to maximize accuracy and performance.
Related papers
- Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code [0.0]
We introduce the Local Clustering Decoder as a solution that simultaneously achieves the accuracy and speed requirements of a real-time decoding system.
Our decoder is implemented on FPGAs and exploits hardware parallelism to keep pace with the fastest qubit types.
It enables one million error-free quantum operations with 4x fewer physical qubits when compared to standard non-adaptive decoding.
arXiv Detail & Related papers (2024-11-15T16:43:59Z) - Generalizing the matching decoder for the Chamon code [1.8416014644193066]
We implement a matching decoder for a three-dimensional, non-CSS, low-density parity check code known as the Chamon code.
We find that a generalized matching decoder that is augmented by a belief-propagation step prior to matching gives a threshold of 10.5% for depolarising noise.
arXiv Detail & Related papers (2024-11-05T19:00:12Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Efficient Encoder-Decoder Transformer Decoding for Decomposable Tasks [53.550782959908524]
We introduce a new configuration for encoder-decoder models that improves efficiency on structured output and decomposable tasks.
Our method, prompt-in-decoder (PiD), encodes the input once and decodes the output in parallel, boosting both training and inference efficiency.
arXiv Detail & Related papers (2024-03-19T19:27:23Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
arXiv Detail & Related papers (2023-07-18T17:46:33Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
We introduce a general framework to boost the performance and applicability of machine learning (ML) models.
We propose to combine ML decoders with a competing discriminator network that tries to distinguish between codewords and noisy words.
Our framework is game-theoretic, motivated by generative adversarial networks (GANs)
arXiv Detail & Related papers (2021-12-21T19:14:44Z) - Hierarchical decoding to reduce hardware requirements for quantum
computing [0.0]
We propose a fault-tolerant quantum computing architecture based on surface codes with a cheap hard-decision decoder.
We obtain a 1,500x reduction in bandwidth and decoding hardware thanks to the lazy decoder.
Our simulations show a 10x speed-up of the Union-Find decoder and a 50x speed-up of the Minimum Weight Perfect Matching decoder.
arXiv Detail & Related papers (2020-01-30T16:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.