論文の概要: AutoOPE: Automated Off-Policy Estimator Selection
- arxiv url: http://arxiv.org/abs/2406.18022v1
- Date: Wed, 26 Jun 2024 02:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:57:54.649537
- Title: AutoOPE: Automated Off-Policy Estimator Selection
- Title(参考訳): AutoOPE: オフ・ポリティ・エスペクタの自動選択
- Authors: Nicolò Felicioni, Michael Benigni, Maurizio Ferrari Dacrema,
- Abstract要約: オフ・ポリティィ・アセスメントの問題は、相手が収集したデータを用いて、カウンターファクト・ポリシーのパフォーマンスを評価することである。
機械学習に基づく自動データ駆動型OPE推定器選択法を提案する。
- 参考スコア(独自算出の注目度): 7.476028372444458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Off-Policy Evaluation (OPE) problem consists of evaluating the performance of counterfactual policies with data collected by another one. This problem is of utmost importance for various application domains, e.g., recommendation systems, medical treatments, and many others. To solve the OPE problem, we resort to estimators, which aim to estimate in the most accurate way possible the performance that the counterfactual policies would have had if they were deployed in place of the logging policy. In the literature, several estimators have been developed, all with different characteristics and theoretical guarantees. Therefore, there is no dominant estimator, and each estimator may be the best one for different OPE problems, depending on the characteristics of the dataset at hand. While the selection of the estimator is a crucial choice for an accurate OPE, this problem has been widely overlooked in the literature. We propose an automated data-driven OPE estimator selection method based on machine learning. In particular, the core idea we propose in this paper is to create several synthetic OPE tasks and use a machine learning model trained to predict the best estimator for those synthetic tasks. We empirically show how our method is able to generalize to unseen tasks and make a better estimator selection compared to a baseline method on several real-world datasets, with a computational cost significantly lower than the one of the baseline.
- Abstract(参考訳): オフ・ポリティ・アセスメント(OPE)問題(Off-Policy Evaluation)は、相手が収集したデータを用いて、反現実的なポリシーのパフォーマンスを評価することである。
この問題は、例えば、レコメンデーションシステム、医療治療など、さまざまなアプリケーション領域において最も重要である。
OPEの問題を解決するために,我々は,ロギングポリシに代えて配置された場合の対策策が持つパフォーマンスを,最も正確な方法で推定することを目的とした推定器を利用する。
文献では、様々な特性と理論的保証を持ついくつかの推定器が開発されている。
したがって、支配的な推定器はなく、各推定器は、手元にあるデータセットの特性に応じて、異なるOPE問題に最適な推定器である可能性がある。
推定器の選択は正確なOPEにとって決定的な選択であるが、この問題は文献で広く見過ごされてきた。
機械学習に基づく自動データ駆動型OPE推定器選択法を提案する。
特に,本論文で提案する中核的な考え方は,複数の合成OPEタスクを作成し,それらの合成タスクに最適な推定器を予測するために訓練された機械学習モデルを使用することである。
提案手法は,複数の実世界のデータセットのベースライン法と比較して,計算コストが基本ラインよりも大幅に低く,不特定タスクに一般化し,より優れた推定子選択を実現できることを実証的に示す。
関連論文リスト
- OPERA: Automatic Offline Policy Evaluation with Re-weighted Aggregates of Multiple Estimators [13.408838970377035]
オフライン政策評価(OPE)により、新たなシーケンシャルな意思決定方針のパフォーマンスを評価し、見積もることができる。
統計的手法を用いた明示的な選択に頼ることなく,データセットに与えられたOPE推定器の集合を適応的にブレンドするアルゴリズムを提案する。
我々の研究は、オフラインRLのための汎用的、推定対象に依存しない、非政治評価フレームワークの使いやすさの向上に寄与する。
論文 参考訳(メタデータ) (2024-05-27T23:51:20Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
オンライン報酬指標の偏りのないオフライン推定を最適化する意思決定ポリシーを学習することを目指している。
学習シナリオにおける同値性に基づく単一のフレームワークを提案する。
我々のフレームワークは、分散最適非バイアス推定器の特徴付けを可能にし、それに対する閉形式解を提供する。
論文 参考訳(メタデータ) (2024-05-09T12:52:22Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
我々は、OPEのサンプル効率を人間の好みで研究し、その統計的保証を確立する。
ReLUネットワークのサイズを適切に選択することにより、マルコフ決定過程において任意の低次元多様体構造を活用できることが示される。
論文 参考訳(メタデータ) (2023-10-16T16:27:06Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
本研究では,不確実性を考慮した逆確率スコア推定器 (UIPS) を提案する。
実世界の3つのレコメンデーションデータセットを用いた実験結果から,提案したUIPS推定器の有効サンプル効率が示された。
論文 参考訳(メタデータ) (2023-03-11T11:42:26Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy Evaluation (OPE) は、潜在的に異なる行動ポリシーによって生成されたオフラインデータを用いて、新しいターゲットポリシーを評価することに関心がある。
本稿では、逐次決定における量子OPEの2倍のロス率推論手順を提案する。
本提案手法の利点は,シミュレーションと,ショートビデオプラットフォームによる実世界のデータセットの両方を用いて示す。
論文 参考訳(メタデータ) (2022-12-29T22:01:43Z) - Policy-Adaptive Estimator Selection for Off-Policy Evaluation [12.1655494876088]
Off-policy Evaluation (OPE) は、オフラインログデータのみを使用して、カウンターファクトポリシーの性能を正確に評価することを目的としている。
本稿では,OPEにおける推定器選択の課題を初めて考察する。
特に、利用可能なログデータを適切にサブサンプリングし、擬似ポリシーを構築することにより、与えられたOPEタスクに適応する推定子選択を可能にする。
論文 参考訳(メタデータ) (2022-11-25T05:31:42Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Data-Driven Off-Policy Estimator Selection: An Application in User
Marketing on An Online Content Delivery Service [11.986224119327387]
医療、マーケティング、レコメンデーションシステムといった分野では、非政治的な評価が不可欠である。
理論的背景を持つ多くのOPE法が提案されている。
特定の用途や目的のために使用すると見積もる実践者にとって、しばしば不明である。
論文 参考訳(メタデータ) (2021-09-17T15:53:53Z) - Evaluating the Robustness of Off-Policy Evaluation [10.760026478889664]
Off-policy Evaluation (OPE)は、オフラインログデータのみを活用する仮説的ポリシーの性能を評価する。
オンラインインタラクションが高利得と高価な設定を含むアプリケーションでは特に有用である。
我々は,OPE推定器のロバスト性を評価する実験手法であるIEOE(Interpretable Evaluation for Offline Evaluation)を開発した。
論文 参考訳(メタデータ) (2021-08-31T09:33:13Z) - Control Variates for Slate Off-Policy Evaluation [112.35528337130118]
多次元動作を伴うバッチ化されたコンテキスト帯域データから政治外評価の問題について検討する。
我々は, PIと自己正規化PIの双方に対して, リスク改善を保証した新しい推定器を得る。
論文 参考訳(メタデータ) (2021-06-15T06:59:53Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。