Towards Synchronous Memorizability and Generalizability with Site-Modulated Diffusion Replay for Cross-Site Continual Segmentation
- URL: http://arxiv.org/abs/2406.18037v2
- Date: Thu, 8 Aug 2024 03:16:23 GMT
- Title: Towards Synchronous Memorizability and Generalizability with Site-Modulated Diffusion Replay for Cross-Site Continual Segmentation
- Authors: Dunyuan Xu, Xi Wang, Jingyang Zhang, Pheng-Ann Heng,
- Abstract summary: This paper proposes a novel training paradigm, learning towards Synchronous Memorizability and Generalizability (SMG-Learning)
We create the orientational gradient alignment to ensure memorizability on previous sites, and arbitrary gradient alignment to enhance generalizability on unseen sites.
Experimental results show that our method efficiently enhances both memorizability and generalizablity better than other state-of-the-art methods.
- Score: 50.70671908078593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn sequentially from different data sites is crucial for a deep network in solving practical medical image diagnosis problems due to privacy restrictions and storage limitations. However, adapting on incoming site leads to catastrophic forgetting on past sites and decreases generalizablity on unseen sites. Existing Continual Learning (CL) and Domain Generalization (DG) methods have been proposed to solve these two challenges respectively, but none of them can address both simultaneously. Recognizing this limitation, this paper proposes a novel training paradigm, learning towards Synchronous Memorizability and Generalizability (SMG-Learning). To achieve this, we create the orientational gradient alignment to ensure memorizability on previous sites, and arbitrary gradient alignment to enhance generalizability on unseen sites. This approach is named as Parallel Gradient Alignment (PGA). Furthermore, we approximate the PGA as dual meta-objectives using the first-order Taylor expansion to reduce computational cost of aligning gradients. Considering that performing gradient alignments, especially for previous sites, is not feasible due to the privacy constraints, we design a Site-Modulated Diffusion (SMD) model to generate images with site-specific learnable prompts, replaying images have similar data distributions as previous sites. We evaluate our method on two medical image segmentation tasks, where data from different sites arrive sequentially. Experimental results show that our method efficiently enhances both memorizability and generalizablity better than other state-of-the-art methods, delivering satisfactory performance across all sites. Our code will be available at: https://github.com/dyxu-cuhkcse/SMG-Learning.
Related papers
- GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Scaling Multimodal Pre-Training via Cross-Modality Gradient
Harmonization [68.49738668084693]
Self-supervised pre-training recently demonstrates success on large-scale multimodal data.
Cross-modality alignment (CMA) is only a weak and noisy supervision.
CMA might cause conflicts and biases among modalities.
arXiv Detail & Related papers (2022-11-03T18:12:32Z) - Learning towards Synchronous Network Memorizability and Generalizability
for Continual Segmentation across Multiple Sites [52.84959869494459]
In clinical practice, a segmentation network is often required to continually learn on a sequential data stream from multiple sites.
Existing methods are usually restricted in either network memorizability on previous sites or generalizability on unseen sites.
This paper aims to tackle the problem of Synchronous Memorizability and Generalizability with a novel proposed SMG-learning framework.
arXiv Detail & Related papers (2022-06-14T13:04:36Z) - Incremental Learning Meets Transfer Learning: Application to Multi-site
Prostate MRI Segmentation [16.50535949349874]
We propose a novel multi-site segmentation framework called incremental-transfer learning (ITL)
ITL learns a model from multi-site datasets in an end-to-end sequential fashion.
We show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic problems in incremental learning.
arXiv Detail & Related papers (2022-06-03T02:32:01Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain.
Existing methods try to learn domain invariant features while suffering from large domain gaps.
We propose a novel Dual Soft-Paste (DSP) method in this paper.
arXiv Detail & Related papers (2021-07-20T16:22:40Z) - Semi-supervised Medical Image Segmentation through Dual-task Consistency [18.18484640332254]
We propose a novel dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target.
Our method can largely improve the performance by incorporating the unlabeled data.
Our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods.
arXiv Detail & Related papers (2020-09-09T17:49:21Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.