PharmaGPT: Domain-Specific Large Language Models for Bio-Pharmaceutical and Chemistry
- URL: http://arxiv.org/abs/2406.18045v3
- Date: Tue, 9 Jul 2024 06:52:17 GMT
- Title: PharmaGPT: Domain-Specific Large Language Models for Bio-Pharmaceutical and Chemistry
- Authors: Linqing Chen, Weilei Wang, Zilong Bai, Peng Xu, Yan Fang, Jie Fang, Wentao Wu, Lizhi Zhou, Ruiji Zhang, Yubin Xia, Chaobo Xu, Ran Hu, Licong Xu, Qijun Cai, Haoran Hua, Jing Sun, Jin Liu, Tian Qiu, Haowen Liu, Meng Hu, Xiuwen Li, Fei Gao, Yufu Wang, Lin Tie, Chaochao Wang, Jianping Lu, Cheng Sun, Yixin Wang, Shengjie Yang, Yuancheng Li, Lu Jin, Lisha Zhang, Fu Bian, Zhongkai Ye, Lidong Pei, Changyang Tu,
- Abstract summary: Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by minimizing the need for complex feature engineering.
We introduce PharmaGPT, a suite of domain specilized LLMs specifically trained on the Bio-Pharmaceutical and Chemical domains.
Our evaluation shows that PharmaGPT surpasses existing general models on specific-domain benchmarks.
- Score: 28.447446808292625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmaGPT, a suite of domain specilized LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus tailored to the Bio-Pharmaceutical and Chemical domains. Our evaluation shows that PharmaGPT surpasses existing general models on specific-domain benchmarks such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. Remarkably, this performance is achieved with a model that has only a fraction, sometimes just one-tenth-of the parameters of general-purpose large models. This advancement establishes a new benchmark for LLMs in the bio-pharmaceutical and chemical fields, addressing the existing gap in specialized language modeling. It also suggests a promising path for enhanced research and development, paving the way for more precise and effective NLP applications in these areas.
Related papers
- Biological Sequence with Language Model Prompting: A Survey [14.270959261105968]
Large Language models (LLMs) have emerged as powerful tools for addressing challenges across diverse domains.
This paper systematically investigates the application of prompt-based methods with LLMs to biological sequences.
arXiv Detail & Related papers (2025-03-06T06:28:36Z) - Exploring the Benefits of Domain-Pretraining of Generative Large Language Models for Chemistry [5.4665365335928024]
We investigate the trade-offs of leveraging off-the-shelf versus more targeted foundation models for scientific domains.
In this work, we examine the benefits of in-domain pre-training for a given scientific domain, chemistry, and compare these to open-source, off-the-shelf models with zero-shot and few-shot prompting.
Our results show that not only do in-domain base models perform reasonably well on in-domain tasks in a zero-shot setting but that further adaptation using instruction fine-tuning yields impressive performance on chemistry-specific tasks.
arXiv Detail & Related papers (2024-11-05T22:45:10Z) - MolCap-Arena: A Comprehensive Captioning Benchmark on Language-Enhanced Molecular Property Prediction [44.27112553103388]
We present Molecule Caption Arena: the first comprehensive benchmark of large language models (LLMs)augmented molecular property prediction.
We evaluate over twenty LLMs, including both general-purpose and domain-specific molecule captioners, across diverse prediction tasks.
Our findings confirm the ability of LLM-extracted knowledge to enhance state-of-the-art molecular representations.
arXiv Detail & Related papers (2024-11-01T17:03:16Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol is a knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction.
It learns from a corpus of publications, knowledge graphs, and expert-designed synthetic data.
Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
arXiv Detail & Related papers (2024-10-15T12:39:20Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering [2.140221068402338]
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains.
A benchmark dataset is curated to the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials.
The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics.
arXiv Detail & Related papers (2024-04-22T16:55:44Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - From Words to Molecules: A Survey of Large Language Models in Chemistry [8.129759559674968]
This paper explores the nuanced methodologies employed in integrating Large Language Models (LLMs) into the field of chemistry.
We categorize chemical LLMs into three distinct groups based on the domain and modality of their input data, and discuss approaches for integrating these inputs for LLMs.
Finally, we identify promising research directions, including further integration with chemical knowledge, advancements in continual learning, and improvements in model interpretability.
arXiv Detail & Related papers (2024-02-02T14:30:48Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.