A Multi-Stage Goal-Driven Network for Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2406.18050v1
- Date: Wed, 26 Jun 2024 03:59:21 GMT
- Title: A Multi-Stage Goal-Driven Network for Pedestrian Trajectory Prediction
- Authors: Xiuen Wu, Tao Wang, Yuanzheng Cai, Lingyu Liang, George Papageorgiou,
- Abstract summary: This paper proposes a novel method for pedestrian trajectory prediction, called multi-stage goal-driven network (MGNet)
The network comprises three main components: a conditional variational autoencoder (CVAE), an attention module, and a multi-stage goal evaluator.
The effectiveness of MGNet is demonstrated through comprehensive experiments on the JAAD and PIE datasets.
- Score: 6.137256382926171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian trajectory prediction plays a pivotal role in ensuring the safety and efficiency of various applications, including autonomous vehicles and traffic management systems. This paper proposes a novel method for pedestrian trajectory prediction, called multi-stage goal-driven network (MGNet). Diverging from prior approaches relying on stepwise recursive prediction and the singular forecasting of a long-term goal, MGNet directs trajectory generation by forecasting intermediate stage goals, thereby reducing prediction errors. The network comprises three main components: a conditional variational autoencoder (CVAE), an attention module, and a multi-stage goal evaluator. Trajectories are encoded using conditional variational autoencoders to acquire knowledge about the approximate distribution of pedestrians' future trajectories, and combined with an attention mechanism to capture the temporal dependency between trajectory sequences. The pivotal module is the multi-stage goal evaluator, which utilizes the encoded feature vectors to predict intermediate goals, effectively minimizing cumulative errors in the recursive inference process. The effectiveness of MGNet is demonstrated through comprehensive experiments on the JAAD and PIE datasets. Comparative evaluations against state-of-the-art algorithms reveal significant performance improvements achieved by our proposed method.
Related papers
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
Trajectory prediction is crucial for autonomous driving as it aims to forecast future movements of traffic participants.
Traditional methods usually perform holistic inference on trajectories of agents, neglecting the differences in difficulty among agents.
This paper proposes a novel DifficultyGuided Feature Enhancement (DGFNet), which leverages the prediction difficulty differences among agents.
arXiv Detail & Related papers (2024-07-26T07:04:30Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles.
Recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians.
This paper proposes a graph transformer structure to improve prediction performance.
arXiv Detail & Related papers (2024-01-10T01:50:29Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.
A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.
Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Stepwise Goal-Driven Networks for Trajectory Prediction [24.129731432223416]
We propose to predict the future trajectories of observed agents by estimating and using their goals at multiple time scales.
We present a novel recurrent network for trajectory prediction, called Stepwise Goal-Driven Network (SGNet)
In particular, the framework incorporates an encoder module that captures historical information, a stepwise goal estimator that predicts successive goals into the future, and a decoder module that predicts future trajectory.
arXiv Detail & Related papers (2021-03-25T19:51:54Z) - BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal
Goal Estimation [28.10445924083422]
BiTraP is a goal-conditioned bi-directional multi-modal trajectory prediction method based on the CVAE.
BiTraP generalizes to both first-person view (FPV) and bird's-eye view (BEV) scenarios and outperforms state-of-the-art results by 10-50%.
arXiv Detail & Related papers (2020-07-29T02:40:17Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.