BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal
Goal Estimation
- URL: http://arxiv.org/abs/2007.14558v2
- Date: Mon, 16 Nov 2020 17:30:24 GMT
- Title: BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal
Goal Estimation
- Authors: Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, Xiaoxiao
Du
- Abstract summary: BiTraP is a goal-conditioned bi-directional multi-modal trajectory prediction method based on the CVAE.
BiTraP generalizes to both first-person view (FPV) and bird's-eye view (BEV) scenarios and outperforms state-of-the-art results by 10-50%.
- Score: 28.10445924083422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian trajectory prediction is an essential task in robotic applications
such as autonomous driving and robot navigation. State-of-the-art trajectory
predictors use a conditional variational autoencoder (CVAE) with recurrent
neural networks (RNNs) to encode observed trajectories and decode multi-modal
future trajectories. This process can suffer from accumulated errors over long
prediction horizons (>=2 seconds). This paper presents BiTraP, a
goal-conditioned bi-directional multi-modal trajectory prediction method based
on the CVAE. BiTraP estimates the goal (end-point) of trajectories and
introduces a novel bi-directional decoder to improve longer-term trajectory
prediction accuracy. Extensive experiments show that BiTraP generalizes to both
first-person view (FPV) and bird's-eye view (BEV) scenarios and outperforms
state-of-the-art results by ~10-50%. We also show that different choices of
non-parametric versus parametric target models in the CVAE directly influence
the predicted multi-modal trajectory distributions. These results provide
guidance on trajectory predictor design for robotic applications such as
collision avoidance and navigation systems.
Related papers
- A Multi-Stage Goal-Driven Network for Pedestrian Trajectory Prediction [6.137256382926171]
This paper proposes a novel method for pedestrian trajectory prediction, called multi-stage goal-driven network (MGNet)
The network comprises three main components: a conditional variational autoencoder (CVAE), an attention module, and a multi-stage goal evaluator.
The effectiveness of MGNet is demonstrated through comprehensive experiments on the JAAD and PIE datasets.
arXiv Detail & Related papers (2024-06-26T03:59:21Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - PBP: Path-based Trajectory Prediction for Autonomous Driving [3.640190809479174]
Trajectory prediction plays a crucial role in the autonomous driving stack.
Goal-based prediction models have gained traction in recent years for addressing the multimodal nature of future trajectories.
arXiv Detail & Related papers (2023-09-07T14:45:41Z) - An End-to-End Framework of Road User Detection, Tracking, and Prediction
from Monocular Images [11.733622044569486]
We build an end-to-end framework for detection, tracking, and trajectory prediction called ODTP.
It adopts the state-of-the-art online multi-object tracking model, QD-3DT, for perception and trains the trajectory predictor, DCENet++, directly based on the detection results.
We evaluate the performance of ODTP on the widely used nuScenes dataset for autonomous driving.
arXiv Detail & Related papers (2023-08-09T15:46:25Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Multi-Head Attention based Probabilistic Vehicle Trajectory Prediction [10.905596145969223]
We propose a simple encoder-decoder architecture based on multi-head attention.
The proposed model generates the distribution of the predicted trajectories for multiple vehicles in parallel.
arXiv Detail & Related papers (2020-04-08T06:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.