Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals
- URL: http://arxiv.org/abs/2406.18069v3
- Date: Fri, 5 Jul 2024 01:25:13 GMT
- Title: Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals
- Authors: Zengding Liu, Chen Chen, Jiannong Cao, Minglei Pan, Jikui Liu, Nan Li, Fen Miao, Ye Li,
- Abstract summary: There is a notable gap in the utilization of large language models (LLMs) for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement.
This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals.
To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants.
- Score: 14.216163316714285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have captured significant interest from both academia and industry due to their impressive performance across various textual tasks. However, the potential of LLMs to analyze physiological time-series data remains an emerging research field. Particularly, there is a notable gap in the utilization of LLMs for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement, which is critical for the management of cardiovascular diseases. This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals. We extracted physiological features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals and designed context-enhanced prompts by combining these features with BP domain knowledge and user information. Subsequently, we adapted LLMs to BP estimation tasks through fine-tuning. To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants. The experimental results demonstrate that the optimally fine-tuned LLM significantly surpasses conventional task-specific baselines, achieving an estimation error of 0.00 $\pm$ 9.25 mmHg for systolic BP and 1.29 $\pm$ 6.37 mmHg for diastolic BP. Notably, the ablation studies highlight the benefits of our context enhancement strategy, leading to an 8.9% reduction in mean absolute error for systolic BP estimation. This paper pioneers the exploration of LLMs for cuffless BP measurement, providing a potential solution to enhance the accuracy of cuffless BP measurement.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
The paper introduces the TransfoRhythm framework, a Transformer-based architecture built upon the recently released physiological database, MIMIC-IV.
To our knowledge, this paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation.
arXiv Detail & Related papers (2024-04-15T00:36:33Z) - LLMs in Biomedicine: A study on clinical Named Entity Recognition [42.71263594812782]
Large Language Models (LLMs) demonstrate remarkable versatility in various NLP tasks.
This paper investigates strategies to enhance their performance for the NER task.
Our proposed method, DiRAG, can boost the zero-shot F1 score of LLMs for biomedical NER.
arXiv Detail & Related papers (2024-04-10T22:26:26Z) - Exploring the limitations of blood pressure estimation using the photoplethysmography signal [0.0]
Photoplemography (N- Siamese) and Invasive Arterial Blood Pressure (N-IABP) signals are compared.
N-IABP signals meet with AAMI standards for both Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
Our findings highlight the potential and limitations of employing PPG for BP estimation.
arXiv Detail & Related papers (2024-04-09T14:08:23Z) - ALPHA: AnomaLous Physiological Health Assessment Using Large Language
Models [4.247764575421617]
Large Language Models (LLMs) exhibit exceptional performance in determining medical indicators.
Our specially adapted GPT models demonstrated remarkable proficiency, achieving less than 1 bpm error in cycle count.
This study highlights LLMs' dual role as health data analysis tools and pivotal elements in advanced AI health assistants.
arXiv Detail & Related papers (2023-11-21T11:09:57Z) - SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for
prior-informed assessment of muscle function and pathology [48.54269377408277]
We introduce the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI), that integrates hypothesis-driven priors in a data-driven Deep Learning approach.
SEMPAI performs joint learning of several tasks to enable prediction for small datasets.
SEMPAI outperforms state-of-the-art biomarkers in six of seven predictive tasks, including those with scarce data.
arXiv Detail & Related papers (2022-10-28T17:03:04Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
Most existing methods used in the hospitals for continuous monitoring of Blood Pressure (BP) are invasive.
In this study, we explored the applicability of autoencoders in predicting BP from non-invasively collectible signals such as Photoplethysmogram ( PPG) and ECG signals.
It was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with the state-of-the-art performance on a very large dataset.
arXiv Detail & Related papers (2021-11-12T19:34:20Z) - Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques [0.0]
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP)
Continuous monitoring of BP is very important; however, BP measurements are discrete and uncomfortable to the user.
To address this need, a cuffless, continuous and a non-invasive BP measurement system is proposed.
arXiv Detail & Related papers (2020-05-07T09:45:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.