Start from Zero: Triple Set Prediction for Automatic Knowledge Graph Completion
- URL: http://arxiv.org/abs/2406.18166v1
- Date: Wed, 26 Jun 2024 08:26:32 GMT
- Title: Start from Zero: Triple Set Prediction for Automatic Knowledge Graph Completion
- Authors: Wen Zhang, Yajing Xu, Peng Ye, Zhiwei Huang, Zezhong Xu, Jiaoyan Chen, Jeff Z. Pan, Huajun Chen,
- Abstract summary: We propose a graph-level automatic KG completion task called Triple Set Prediction (TSP)
TSP assumes none of the elements in the missing triples is given.
To tackle the huge candidate triples for prediction, we propose a novel and efficient subgraph-based method GPHT.
- Score: 49.19814695500355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph (KG) completion aims to find out missing triples in a KG. Some tasks, such as link prediction and instance completion, have been proposed for KG completion. They are triple-level tasks with some elements in a missing triple given to predict the missing element of the triple. However, knowing some elements of the missing triple in advance is not always a realistic setting. In this paper, we propose a novel graph-level automatic KG completion task called Triple Set Prediction (TSP) which assumes none of the elements in the missing triples is given. TSP is to predict a set of missing triples given a set of known triples. To properly and accurately evaluate this new task, we propose 4 evaluation metrics including 3 classification metrics and 1 ranking metric, considering both the partial-open-world and the closed-world assumptions. Furthermore, to tackle the huge candidate triples for prediction, we propose a novel and efficient subgraph-based method GPHT that can predict the triple set fast. To fairly compare the TSP results, we also propose two types of methods RuleTensor-TSP and KGE-TSP applying the existing rule- and embedding-based methods for TSP as baselines. During experiments, we evaluate the proposed methods on two datasets extracted from Wikidata following the relation-similarity partial-open-world assumption proposed by us, and also create a complete family data set to evaluate TSP results following the closed-world assumption. Results prove that the methods can successfully generate a set of missing triples and achieve reasonable scores on the new task, and GPHT performs better than the baselines with significantly shorter prediction time. The datasets and code for experiments are available at https://github.com/zjukg/GPHT-for-TSP.
Related papers
- Few-shot Knowledge Graph Relational Reasoning via Subgraph Adaptation [51.47994645529258]
Few-shot Knowledge Graph (KG) Reasoning aims to predict unseen triplets (i.e., query triplets) for rare relations in KGs.
We propose SAFER (Subgraph Adaptation for Few-shot Reasoning), a novel approach that effectively adapts the information in contextualized graphs to various subgraphs.
arXiv Detail & Related papers (2024-06-19T21:40:35Z) - Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect
Sentiment Triplet Extraction [63.0205418944714]
Aspect Sentiment Triplet Extraction (ASTE) is an emerging task to extract a given sentence's triplets, which consist of aspects, opinions, and sentiments.
Recent studies tend to address this task with a table-filling paradigm, wherein word relations are encoded in a two-dimensional table.
We propose a novel model for the ASTE task, called Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN), which converts the relation table into a graph to explore more comprehensive relational information.
arXiv Detail & Related papers (2023-12-18T12:46:09Z) - Implicit and Efficient Point Cloud Completion for 3D Single Object
Tracking [9.372859423951349]
We introduce two novel modules, i.e., Adaptive Refine Prediction (ARP) and Target Knowledge Transfer (TKT)
Our model achieves state-of-the-art performance while maintaining a lower computational consumption.
arXiv Detail & Related papers (2022-09-01T15:11:06Z) - A Review of Knowledge Graph Completion [0.0]
Information extraction methods proved to be effective at triple extraction from structured or unstructured data.
Most of the current knowledge graphs are incomplete.
In order to use KGs in downstream tasks, it is desirable to predict missing links in KGs.
arXiv Detail & Related papers (2022-08-24T16:42:59Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoard is an interactive framework for performing fine-grained evaluation on meaningful subsets of the data.
In our experiments, we highlight the findings with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.
arXiv Detail & Related papers (2022-08-23T15:11:45Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - A shallow neural model for relation prediction [2.2559617939136505]
We propose a shallow neural model (SHALLOM) that accurately infers missing relations from entities.
Our experiments indicate that SHALLOM outperforms state-of-the-art approaches on the FB15K-237 and WN18RR datasets.
arXiv Detail & Related papers (2021-01-22T13:10:11Z) - Joint Entity and Relation Extraction with Set Prediction Networks [24.01964730210045]
We treat joint entity and relation extraction as a direct set prediction problem.
Unlike autoregressive approaches that generate triples one by one in a certain order, the proposed networks directly output the final set of triples in one shot.
Experiments on two benchmark datasets show that our proposed model significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-03T13:04:31Z) - Regularized Densely-connected Pyramid Network for Salient Instance
Segmentation [73.17802158095813]
We propose a new pipeline for end-to-end salient instance segmentation (SIS)
To better use the rich feature hierarchies in deep networks, we propose the regularized dense connections.
A novel multi-level RoIAlign based decoder is introduced to adaptively aggregate multi-level features for better mask predictions.
arXiv Detail & Related papers (2020-08-28T00:13:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.