EFCNet: Every Feature Counts for Small Medical Object Segmentation
- URL: http://arxiv.org/abs/2406.18201v1
- Date: Wed, 26 Jun 2024 09:33:51 GMT
- Title: EFCNet: Every Feature Counts for Small Medical Object Segmentation
- Authors: Lingjie Kong, Qiaoling Wei, Chengming Xu, Han Chen, Yanwei Fu,
- Abstract summary: This paper explores the segmentation of very small medical objects with significant clinical value.
CNNs, UNet-like models, and recent Transformers have shown substantial progress in image segmentation.
We propose a novel model named EFCNet for small object segmentation in medical images.
- Score: 44.26196156775273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the segmentation of very small medical objects with significant clinical value. While Convolutional Neural Networks (CNNs), particularly UNet-like models, and recent Transformers have shown substantial progress in image segmentation, our empirical findings reveal their poor performance in segmenting the small medical objects and lesions concerned in this paper. This limitation may be attributed to information loss during their encoding and decoding process. In response to this challenge, we propose a novel model named EFCNet for small object segmentation in medical images. Our model incorporates two modules: the Cross-Stage Axial Attention Module (CSAA) and the Multi-Precision Supervision Module (MPS). These modules address information loss during encoding and decoding procedures, respectively. Specifically, CSAA integrates features from all stages of the encoder to adaptively learn suitable information needed in different decoding stages, thereby reducing information loss in the encoder. On the other hand, MPS introduces a novel multi-precision supervision mechanism to the decoder. This mechanism prioritizes attention to low-resolution features in the initial stages of the decoder, mitigating information loss caused by subsequent convolution and sampling processes and enhancing the model's global perception. We evaluate our model on two benchmark medical image datasets. The results demonstrate that EFCNet significantly outperforms previous segmentation methods designed for both medical and normal images.
Related papers
- A Mutual Inclusion Mechanism for Precise Boundary Segmentation in Medical Images [2.9137615132901704]
We present a novel deep learning-based approach, MIPC-Net, for precise boundary segmentation in medical images.
We introduce the MIPC module, which enhances the focus on channel information when extracting position features.
We also propose the GL-MIPC-Residue, a global residual connection that enhances the integration of the encoder and decoder.
arXiv Detail & Related papers (2024-04-12T02:14:35Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
This paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation.
The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder.
The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities.
arXiv Detail & Related papers (2024-02-13T21:03:36Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical
Image Segmentation [7.720152925974362]
We propose a 2D medical image segmentation model called Multi-scale Cross Perceptron Attention Network (MCPA)
The MCPA consists of three main components: an encoder, a decoder, and a Cross Perceptron.
We evaluate our proposed MCPA model on several publicly available medical image datasets from different tasks and devices.
arXiv Detail & Related papers (2023-07-27T02:18:12Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - HistoSeg : Quick attention with multi-loss function for multi-structure
segmentation in digital histology images [0.696194614504832]
Medical image segmentation assists in computer-aided diagnosis, surgeries, and treatment.
We proposed an generalization-Decoder Network, Quick Attention Module and a Multi Loss Function.
We evaluate the capability of our proposed network on two publicly available datasets for medical image segmentation MoNuSeg and GlaS.
arXiv Detail & Related papers (2022-09-01T21:10:00Z) - Atrous Residual Interconnected Encoder to Attention Decoder Framework
for Vertebrae Segmentation via 3D Volumetric CT Images [1.8146155083014204]
This paper proposes a novel algorithm for automated vertebrae segmentation via 3D volumetric spine CT images.
The proposed model is based on the structure of encoder to decoder, using layer normalization to optimize mini-batch training performance.
The experimental results show that our model achieves competitive performance compared with other state-of-the-art medical semantic segmentation methods.
arXiv Detail & Related papers (2021-04-08T12:09:16Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.