論文の概要: Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
- arxiv url: http://arxiv.org/abs/2406.18259v1
- Date: Wed, 26 Jun 2024 11:11:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:39:16.256874
- Title: Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
- Title(参考訳): 機械生成テキストの検出:「AI対人間」だけでなく、説明可能性も複雑に
- Authors: Jiazhou Ji, Ruizhe Li, Shujun Li, Jie Guo, Weidong Qiu, Zheng Huang, Chiyu Chen, Xiaoyu Jiang, Xinru Lu,
- Abstract要約: そこで本研究では,新たな3次テキスト分類手法を導入し,いずれの情報源にも起因する可能性のあるテキストの「未決定」カテゴリを追加する。
この研究は、単に分類から機械が生成したテキストの説明へとパラダイムをシフトさせ、ユーザーに対して明確で理解可能な説明を提供するための検出器の必要性を強調した。
- 参考スコア(独自算出の注目度): 8.77447722226144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
- Abstract(参考訳): LLMが急速に進歩するにつれて、オンラインや現実世界で見られるテキストの実際の著者権に関するリスクが増大する。
LLMで書かれたテキストを区別する作業は、機械と人間のあいまいさと重なり合う振る舞いによって複雑になる。
本稿では,人間とAIを区別する二項分類タスクとして,LLM生成テキスト検出の現在の実践に挑戦する。
そこで本研究では,新たな3つのテキスト分類手法を導入し,いずれの情報源に起因する可能性のあるテキストに対して"未決定"なカテゴリを追加するとともに,本カテゴリが,検出結果を日常ユーザにとってより説明しやすいものにする方法を理解する上で重要であることを示す。
この研究は、単に分類から機械が生成したテキストの説明へとパラダイムをシフトさせ、ユーザーに対して明確で理解可能な説明を提供するための検出器の必要性を強調した。
我々の研究は、様々なLLMと人間の著者のテキストからなる4つの新しいデータセットを作成することを含む。
新たなデータセットに基づいて、最も有効なSOTA検出方法を確認するためにバイナリ分類テストを行い、より難しいテキストを生成することができるSOTA LLMを特定した。
我々は,2つのトップパフォーマンスなLCMとヒトの著者によって生成されたテキストのデータセットを構築し,説明文で3つのアノテータに3つのアノテータラベルを作成するよう依頼した。
このデータセットは、3つの最高性能のSOTA検出器が新しい3次分類の文脈でどのように振る舞うかを調べるために使用された。
その結果、説明可能性の観点から「未決定」カテゴリーが要求される理由が浮き彫りになった。
さらに,3つの優れた検出器の説明可能性と人間の注釈装置の説明ノートの分析を行い,機械生成テキストの説明可能な検出の複雑さに関する知見を明らかにした。
最後に,説明力の向上による将来の検知システム開発のためのガイドラインを提案する。
関連論文リスト
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI生成テキスト鑑定は、LLMの誤用に対処する新たな分野である。
本稿では,検出,帰属,特性の3つの主要な柱に着目した詳細な分類法を紹介する。
我々は、AI生成テキスト法医学研究の利用可能なリソースを探究し、AI時代の法医学システムの進化的課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-03-02T09:39:13Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
LLM生成テキストを検出できる検出器を開発する必要がある。
このことは、LLMが生成するコンテンツの有害な影響から、LLMの潜在的な誤用や、芸術的表現やソーシャルネットワークのような保護領域の軽減に不可欠である。
この検出器技術は、ウォーターマーキング技術、統計ベースの検出器、神経ベース検出器、そして人間の支援手法の革新によって、最近顕著な進歩をみせている。
論文 参考訳(メタデータ) (2023-10-23T09:01:13Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
異なるジャンルの人文・AI生成テキストのデータセットを新たに導入する。
テキストを分類するために、いくつかの機械学習モデルを使用します。
結果は、人間とAIが生成したテキストを識別する上で、これらのモデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-22T21:00:14Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADARはパラフラザーと検出器の対向訓練に基づいている。
パラフレーズの目標は、AIテキスト検出を避けるために現実的なコンテンツを生成することである。
RADARは検出器からのフィードバックを使ってパラフラザーを更新する。
論文 参考訳(メタデータ) (2023-07-07T21:13:27Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。