Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
- URL: http://arxiv.org/abs/2406.18259v1
- Date: Wed, 26 Jun 2024 11:11:47 GMT
- Title: Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
- Authors: Jiazhou Ji, Ruizhe Li, Shujun Li, Jie Guo, Weidong Qiu, Zheng Huang, Chiyu Chen, Xiaoyu Jiang, Xinru Lu,
- Abstract summary: We introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source.
This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users.
- Score: 8.77447722226144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
Related papers
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
In this work, we investigate the task of generated text detection by proposing the GigaCheck.
Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts.
Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize artificially generated intervals within text.
arXiv Detail & Related papers (2024-10-31T08:30:55Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
Large language models (LLMs) have transformed human writing by enhancing grammar correction, content expansion, and stylistic refinement.
Existing detection methods, which mainly rely on single-feature analysis and binary classification, often fail to effectively identify LLM-generated text in academic contexts.
We propose a novel Multi-level Fine-grained Detection framework that detects LLM-generated text by integrating low-level structural, high-level semantic, and deep-level linguistic features.
arXiv Detail & Related papers (2024-10-18T07:25:00Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts [10.027843402296678]
This paper constructs a comprehensive benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors.
We categorize text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate.
For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance.
arXiv Detail & Related papers (2024-06-13T12:43:40Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI-generated text forensics is an emerging field addressing the challenges of LLM misuses.
We introduce a detailed taxonomy, focusing on three primary pillars: detection, attribution, and characterization.
We explore available resources for AI-generated text forensics research and discuss the evolving challenges and future directions of forensic systems in an AI era.
arXiv Detail & Related papers (2024-03-02T09:39:13Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
There is an imperative need to develop detectors that can detect LLM-generated text.
This is crucial to mitigate potential misuse of LLMs and safeguard realms like artistic expression and social networks from harmful influence of LLM-generated content.
The detector techniques have witnessed notable advancements recently, propelled by innovations in watermarking techniques, statistics-based detectors, neural-base detectors, and human-assisted methods.
arXiv Detail & Related papers (2023-10-23T09:01:13Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADAR is based on adversarial training of a paraphraser and a detector.
The paraphraser's goal is to generate realistic content to evade AI-text detection.
RADAR uses the feedback from the detector to update the paraphraser, and vice versa.
arXiv Detail & Related papers (2023-07-07T21:13:27Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.