Continuous Sign Language Recognition Using Intra-inter Gloss Attention
- URL: http://arxiv.org/abs/2406.18333v1
- Date: Wed, 26 Jun 2024 13:21:08 GMT
- Title: Continuous Sign Language Recognition Using Intra-inter Gloss Attention
- Authors: Hossein Ranjbar, Alireza Taheri,
- Abstract summary: In this study, we introduce a novel module in sign language recognition studies, called intra-inter gloss attention module.
In the intra-gloss attention module, the video is divided into equally sized chunks and a self-attention mechanism is applied within each chunk.
Experimental results on the PHOENIX-2014 benchmark dataset demonstrate that our method can effectively extract sign language features in an end-to-end manner.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many continuous sign language recognition (CSLR) studies adopt transformer-based architectures for sequence modeling due to their powerful capacity for capturing global contexts. Nevertheless, vanilla self-attention, which serves as the core module of the transformer, calculates a weighted average over all time steps; therefore, the local temporal semantics of sign videos may not be fully exploited. In this study, we introduce a novel module in sign language recognition studies, called intra-inter gloss attention module, to leverage the relationships among frames within glosses and the semantic and grammatical dependencies between glosses in the video. In the intra-gloss attention module, the video is divided into equally sized chunks and a self-attention mechanism is applied within each chunk. This localized self-attention significantly reduces complexity and eliminates noise introduced by considering non-relative frames. In the inter-gloss attention module, we first aggregate the chunk-level features within each gloss chunk by average pooling along the temporal dimension. Subsequently, multi-head self-attention is applied to all chunk-level features. Given the non-significance of the signer-environment interaction, we utilize segmentation to remove the background of the videos. This enables the proposed model to direct its focus toward the signer. Experimental results on the PHOENIX-2014 benchmark dataset demonstrate that our method can effectively extract sign language features in an end-to-end manner without any prior knowledge, improve the accuracy of CSLR, and achieve the word error rate (WER) of 20.4 on the test set which is a competitive result compare to the state-of-the-art which uses additional supervisions.
Related papers
- ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
arXiv Detail & Related papers (2024-11-24T14:14:14Z) - Linguistic-Based Mild Cognitive Impairment Detection Using Informative
Loss [2.8893654860442872]
We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project.
Our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
arXiv Detail & Related papers (2024-01-23T16:30:22Z) - Self-Sufficient Framework for Continuous Sign Language Recognition [75.60327502570242]
The goal of this work is to develop self-sufficient framework for Continuous Sign Language Recognition.
These include the need for complex multi-scale features such as hands, face, and mouth for understanding, and absence of frame-level annotations.
We propose Divide and Focus Convolution (DFConv) which extracts both manual and non-manual features without the need for additional networks or annotations.
DPLR propagates non-spiky frame-level pseudo-labels by combining the ground truth gloss sequence labels with the predicted sequence.
arXiv Detail & Related papers (2023-03-21T11:42:57Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Improving Continuous Sign Language Recognition with Consistency
Constraints and Signer Removal [24.537234147678113]
We propose three auxiliary tasks to enhance the CSLR backbones.
A keypoint-guided spatial attention module is developed to enforce the visual module.
A sentence embedding consistency constraint is imposed between the visual and sequential modules.
Our model achieves state-of-the-art or competitive performance on five benchmarks.
arXiv Detail & Related papers (2022-12-26T06:38:34Z) - Compositional Generalization in Grounded Language Learning via Induced
Model Sparsity [81.38804205212425]
We consider simple language-conditioned navigation problems in a grid world environment with disentangled observations.
We design an agent that encourages sparse correlations between words in the instruction and attributes of objects, composing them together to find the goal.
Our agent maintains a high level of performance on goals containing novel combinations of properties even when learning from a handful of demonstrations.
arXiv Detail & Related papers (2022-07-06T08:46:27Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
We propose a novel framework STswinCL that explores the complementary intra- and inter-video relations to boost segmentation performance.
We extensively validate our approach on two public surgical video benchmarks, including EndoVis18 Challenge and CaDIS dataset.
Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T05:52:23Z) - TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for
Sign Language Translation [101.6042317204022]
Sign language translation (SLT) aims to interpret sign video sequences into text-based natural language sentences.
Existing SLT models usually represent sign visual features in a frame-wise manner.
We develop a novel hierarchical sign video feature learning method via a temporal semantic pyramid network, called TSPNet.
arXiv Detail & Related papers (2020-10-12T05:58:09Z) - IAUnet: Global Context-Aware Feature Learning for Person
Re-Identification [106.50534744965955]
IAU block enables the feature to incorporate the globally spatial, temporal, and channel context.
It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet.
Experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks.
arXiv Detail & Related papers (2020-09-02T13:07:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.