ResCLIP: Residual Attention for Training-free Dense Vision-language Inference
- URL: http://arxiv.org/abs/2411.15851v1
- Date: Sun, 24 Nov 2024 14:14:14 GMT
- Title: ResCLIP: Residual Attention for Training-free Dense Vision-language Inference
- Authors: Yuhang Yang, Jinhong Deng, Wen Li, Lixin Duan,
- Abstract summary: Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
- Score: 27.551367463011008
- License:
- Abstract: While vision-language models like CLIP have shown remarkable success in open-vocabulary tasks, their application is currently confined to image-level tasks, and they still struggle with dense predictions. Recent works often attribute such deficiency in dense predictions to the self-attention layers in the final block, and have achieved commendable results by modifying the original query-key attention to self-correlation attention, (e.g., query-query and key-key attention). However, these methods overlook the cross-correlation attention (query-key) properties, which capture the rich spatial correspondence. In this paper, we reveal that the cross-correlation of the self-attention in CLIP's non-final layers also exhibits localization properties. Therefore, we propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block. The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference. Furthermore, to enhance the focus on regions of the same categories and local consistency, we propose the Semantic Feedback Refinement (SFR) module, which utilizes semantic segmentation maps to further adjust the attention scores. By integrating these two strategies, our method, termed ResCLIP, can be easily incorporated into existing approaches as a plug-and-play module, significantly boosting their performance in dense vision-language inference. Extensive experiments across multiple standard benchmarks demonstrate that our method surpasses state-of-the-art training-free methods, validating the effectiveness of the proposed approach. Code is available at https://github.com/yvhangyang/ResCLIP.
Related papers
- DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
Weakly supervised semantic segmentation approaches typically rely on class activation maps (CAMs) for initial seed generation.
We introduce DALNet, which leverages text embeddings to enhance the comprehensive understanding and precise localization of objects across different levels of granularity.
Our approach, in particular, allows for more efficient end-to-end process as a single-stage method.
arXiv Detail & Related papers (2024-09-24T06:51:49Z) - iSeg: An Iterative Refinement-based Framework for Training-free Segmentation [85.58324416386375]
We present a deep experimental analysis on iteratively refining cross-attention map with self-attention map.
We propose an effective iterative refinement framework for training-free segmentation, named iSeg.
Our proposed iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature.
arXiv Detail & Related papers (2024-09-05T03:07:26Z) - ProxyCLIP: Proxy Attention Improves CLIP for Open-Vocabulary Segmentation [32.852004564832455]
Open-vocabulary semantic segmentation requires models to integrate visual representations with semantic labels.
This paper introduces ProxyCLIP, a framework designed to harmonize the strengths of Contrastive Language-Image Pre-training (CLIP) and Vision Foundation Models (VFMs)
As a training-free approach, ProxyCLIP significantly improves the average mean Intersection over Union (mIoU) across eight benchmarks from 40.3 to 44.4.
arXiv Detail & Related papers (2024-08-09T06:17:00Z) - ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference [32.852004564832455]
We re-investigate the architecture of CLIP, and identify residual connections as the primary source of noise that degrades segmentation quality.
We propose ClearCLIP, a novel approach that decomposes CLIP's representations to enhance open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-07-17T09:52:20Z) - Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation [38.16802763051431]
We propose CLIPtrase, a training-free semantic segmentation strategy.
It enhances local feature awareness through recalibrated self-correlation among patches.
Experiments show that we are 22.3% ahead of CLIP on average on 9 segmentation benchmarks.
arXiv Detail & Related papers (2024-07-11T08:12:16Z) - Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation [19.20874993309959]
vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks.
We propose a baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP)
Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature.
arXiv Detail & Related papers (2024-04-12T01:08:04Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Open-Vocabulary Segmentation with Semantic-Assisted Calibration [73.39366775301382]
We study open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with contextual prior of CLIP.
We present a Semantic-assisted CAlibration Network (SCAN) to achieve state-of-the-art performance on open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2023-12-07T07:00:09Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.