LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks
- URL: http://arxiv.org/abs/2406.18403v2
- Date: Thu, 19 Dec 2024 11:07:09 GMT
- Title: LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks
- Authors: Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández, Albert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, André F. T. Martins, Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle, Barbara Plank, David Schlangen, Alessandro Suglia, Aditya K Surikuchi, Ece Takmaz, Alberto Testoni,
- Abstract summary: There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments.
We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data.
We evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations.
- Score: 106.09361690937618
- License:
- Abstract: There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments, raising questions about the validity of these evaluations, as well as their reproducibility in the case of proprietary models. We provide JUDGE-BENCH, an extensible collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show substantial variance across models and datasets. Models are reliable evaluators on some tasks, but overall display substantial variability depending on the property being evaluated, the expertise level of the human judges, and whether the language is human or model-generated. We conclude that LLMs should be carefully validated against human judgments before being used as evaluators.
Related papers
- HREF: Human Response-Guided Evaluation of Instruction Following in Language Models [61.273153125847166]
We develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF)
In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination.
We study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template.
arXiv Detail & Related papers (2024-12-20T03:26:47Z) - Poor-Supervised Evaluation for SuperLLM via Mutual Consistency [20.138831477848615]
We propose the PoEM framework to conduct evaluation without accurate labels.
We first prove that the capability of a model can be equivalently assessed by the consistency between it and certain reference model.
To alleviate the insufficiencies of the conditions in reality, we introduce an algorithm that treats humans (when available) and the models under evaluation as reference models.
arXiv Detail & Related papers (2024-08-25T06:49:03Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.
This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)
We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
We introduce FLASK, a fine-grained evaluation protocol for both human-based and model-based evaluation.
We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance.
arXiv Detail & Related papers (2023-07-20T14:56:35Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
This study investigates the behavior of crowd-sourced and expert annotators, as well as large language models (LLMs)
Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors.
We propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score.
arXiv Detail & Related papers (2023-07-06T14:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.