BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data
- URL: http://arxiv.org/abs/2406.18414v1
- Date: Wed, 26 Jun 2024 15:09:54 GMT
- Title: BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data
- Authors: Kemiao Huang, Meiying Zhang, Qi Hao,
- Abstract summary: "BiTrack" is a 3D OMOT framework that includes modules of 2D-3D detection fusion, initial trajectory generation, and bidirectional trajectory re-optimization.
The experiment results on the KITTI dataset demonstrate that BiTrack achieves the state-of-the-art performance for 3D OMOT tasks in terms of accuracy and efficiency.
- Score: 11.17376076195671
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Compared with real-time multi-object tracking (MOT), offline multi-object tracking (OMOT) has the advantages to perform 2D-3D detection fusion, erroneous link correction, and full track optimization but has to deal with the challenges from bounding box misalignment and track evaluation, editing, and refinement. This paper proposes "BiTrack", a 3D OMOT framework that includes modules of 2D-3D detection fusion, initial trajectory generation, and bidirectional trajectory re-optimization to achieve optimal tracking results from camera-LiDAR data. The novelty of this paper includes threefold: (1) development of a point-level object registration technique that employs a density-based similarity metric to achieve accurate fusion of 2D-3D detection results; (2) development of a set of data association and track management skills that utilizes a vertex-based similarity metric as well as false alarm rejection and track recovery mechanisms to generate reliable bidirectional object trajectories; (3) development of a trajectory re-optimization scheme that re-organizes track fragments of different fidelities in a greedy fashion, as well as refines each trajectory with completion and smoothing techniques. The experiment results on the KITTI dataset demonstrate that BiTrack achieves the state-of-the-art performance for 3D OMOT tasks in terms of accuracy and efficiency.
Related papers
- You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and
Photometric Bundle Adjustment [41.27664827586102]
Direct methods have shown excellent performance in the applications of visual odometry and SLAM.
We propose a framework that effectively combines direct image alignment for the short-term tracking and sliding-window photometric bundle adjustment for 3D object detection.
arXiv Detail & Related papers (2022-09-29T17:40:22Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
arXiv Detail & Related papers (2022-02-24T13:36:29Z) - Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for
Autonomous Driving [6.396288020763144]
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time.
This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications.
arXiv Detail & Related papers (2021-08-10T11:17:05Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.