論文の概要: Preference Elicitation for Offline Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.18450v1
- Date: Wed, 26 Jun 2024 15:59:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:00:05.257567
- Title: Preference Elicitation for Offline Reinforcement Learning
- Title(参考訳): オフライン強化学習のための選好的励振
- Authors: Alizée Pace, Bernhard Schölkopf, Gunnar Rätsch, Giorgia Ramponi,
- Abstract要約: オフラインの嗜好に基づく強化学習アルゴリズムであるSim-OPRLを提案する。
本アルゴリズムは,配当外データに対する悲観的アプローチと,最適方針に関する情報的嗜好を得るための楽観的アプローチを用いる。
- 参考スコア(独自算出の注目度): 59.136381500967744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying reinforcement learning (RL) to real-world problems is often made challenging by the inability to interact with the environment and the difficulty of designing reward functions. Offline RL addresses the first challenge by considering access to an offline dataset of environment interactions labeled by the reward function. In contrast, Preference-based RL does not assume access to the reward function and learns it from preferences, but typically requires an online interaction with the environment. We bridge the gap between these frameworks by exploring efficient methods for acquiring preference feedback in a fully offline setup. We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm, which leverages a learned environment model to elicit preference feedback on simulated rollouts. Drawing on insights from both the offline RL and the preference-based RL literature, our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy. We provide theoretical guarantees regarding the sample complexity of our approach, dependent on how well the offline data covers the optimal policy. Finally, we demonstrate the empirical performance of Sim-OPRL in different environments.
- Abstract(参考訳): 実世界の問題に強化学習(RL)を適用することは、環境と対話できないこと、報酬関数を設計することが困難であることによって、しばしば挑戦される。
オフラインRLは、報酬関数によってラベル付けされた環境相互作用のオフラインデータセットへのアクセスを検討することで、最初の課題に対処する。
対照的に、PreferenceベースのRLは報酬関数へのアクセスを前提とせず、好みから学習するが、通常は環境とのオンラインインタラクションを必要とする。
完全にオフラインのセットアップで選好フィードバックを取得する効率的な方法を探ることで、これらのフレームワーク間のギャップを埋める。
このアルゴリズムは、学習環境モデルを利用して、シミュレーションされたロールアウトに対する嗜好フィードバックを抽出する。
オフラインRLと嗜好に基づくRL文献の両方からの洞察に基づいて,本アルゴリズムは配当外データに対する悲観的なアプローチと,最適方針に関する情報的嗜好を得るための楽観的なアプローチを用いる。
我々は、オフラインデータが最適ポリシーをどのようにカバーするかに依存する、我々のアプローチのサンプル複雑さに関する理論的保証を提供する。
最後に,異なる環境におけるSim-OPRLの実証性能を示す。
関連論文リスト
- Hindsight Preference Learning for Offline Preference-based Reinforcement Learning [22.870967604847458]
オフライン選好に基づく強化学習(RL)は、オフラインデータセットから選択された軌道セグメントのペア間の人間の選好を使ってポリシーを最適化することに焦点を当てる。
本研究では,軌道セグメントの今後の成果を条件とした報酬を用いて,人間の嗜好をモデル化する。
提案手法であるHindsight Preference Learning (HPL) は,大規模な未ラベルデータセットで利用可能な膨大なトラジェクトリデータをフル活用することにより,クレジットの割り当てを容易にする。
論文 参考訳(メタデータ) (2024-07-05T12:05:37Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
オンラインとオフラインのRLHFに統一的なアプローチを導入します。
VPOは、報酬関数の最大値推定を対応する値関数で正規化する。
テキスト要約とダイアログの実験は、VPOの実用性と有効性を検証する。
論文 参考訳(メタデータ) (2024-05-29T17:51:42Z) - Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning [22.174803826742963]
目標条件付きオフライン強化学習における最適データセットからの最適行動学習の問題に対処する。
本稿では,目標条件付きオフラインRL問題に対する最適値関数を近似するための計量学習法を提案する。
本手法は,分布外推定誤差に悩まされることなく,高度に最適化されたオフラインデータセットから最適な挙動を推定する。
論文 参考訳(メタデータ) (2024-02-16T16:46:53Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Beyond Reward: Offline Preference-guided Policy Optimization [18.49648170835782]
オフライン優先型強化学習(英語: offline preference-based reinforcement learning, PbRL)は、従来の強化学習の変種であり、オンラインインタラクションを必要としない。
本研究は、オフライン優先誘導政策最適化(OPPO)の話題に焦点を当てる。
OPPOは1ステップのプロセスでオフラインの軌跡と好みをモデル化し、報酬関数を別々に学習する必要がない。
論文 参考訳(メタデータ) (2023-05-25T16:24:11Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
オンラインデータ収集を効率的に活用してオフラインデータセットを強化し補完する方法に、中心的な疑問が浮かび上がっている。
我々は、純粋なオフラインRLと純粋なオンラインRLという、両方の世界のベストを打ち負かす3段階のハイブリッドRLアルゴリズムを設計する。
提案アルゴリズムは,データ収集時に報酬情報を必要としない。
論文 参考訳(メタデータ) (2023-05-17T15:17:23Z) - Benchmarks and Algorithms for Offline Preference-Based Reward Learning [41.676208473752425]
本稿では、オフラインデータセットを用いて、プールベースのアクティブラーニングによる嗜好クエリを作成するアプローチを提案する。
提案手法では,報酬学習や政策最適化のステップに対して,実際の物理ロールアウトや正確なシミュレータを必要としない。
論文 参考訳(メタデータ) (2023-01-03T23:52:16Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
より原理的な方法で過大評価を防止するオフライン強化学習アルゴリズムを提案する。
提案アルゴリズムであるOptiDICEは,最適ポリシーの定常分布補正を直接推定する。
OptiDICEは最先端の手法と競合して動作することを示す。
論文 参考訳(メタデータ) (2021-06-21T00:43:30Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。