Mental Modeling of Reinforcement Learning Agents by Language Models
- URL: http://arxiv.org/abs/2406.18505v1
- Date: Wed, 26 Jun 2024 17:14:45 GMT
- Title: Mental Modeling of Reinforcement Learning Agents by Language Models
- Authors: Wenhao Lu, Xufeng Zhao, Josua Spisak, Jae Hee Lee, Stefan Wermter,
- Abstract summary: This study empirically examines, for the first time, how well large language models can build a mental model of agents.
This research may unveil the potential of leveraging LLMs for elucidating RL agent behaviour.
- Score: 14.668006477454616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can emergent language models faithfully model the intelligence of decision-making agents? Though modern language models exhibit already some reasoning ability, and theoretically can potentially express any probable distribution over tokens, it remains underexplored how the world knowledge these pretrained models have memorized can be utilized to comprehend an agent's behaviour in the physical world. This study empirically examines, for the first time, how well large language models (LLMs) can build a mental model of agents, termed agent mental modelling, by reasoning about an agent's behaviour and its effect on states from agent interaction history. This research may unveil the potential of leveraging LLMs for elucidating RL agent behaviour, addressing a key challenge in eXplainable reinforcement learning (XRL). To this end, we propose specific evaluation metrics and test them on selected RL task datasets of varying complexity, reporting findings on agent mental model establishment. Our results disclose that LLMs are not yet capable of fully mental modelling agents through inference alone without further innovations. This work thus provides new insights into the capabilities and limitations of modern LLMs.
Related papers
- Web Agents with World Models: Learning and Leveraging Environment Dynamics in Web Navigation [25.26545170310844]
We present a World-model-augmented (WMA) web agent, which simulates the outcomes of its actions for better decision-making.
Experiments on WebArena and Mind2Web show that our world models improve agents' policy selection without training.
arXiv Detail & Related papers (2024-10-17T05:37:00Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models [4.9108308035618515]
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems.
Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges.
Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction.
arXiv Detail & Related papers (2024-07-09T17:57:15Z) - Towards Generalizable Agents in Text-Based Educational Environments: A Study of Integrating RL with LLMs [22.568925103893182]
We aim to enhance the generalization capabilities of agents in open-ended text-based learning environments by integrating Reinforcement Learning (RL) with Large Language Models (LLMs)
We introduce PharmaSimText, a novel benchmark derived from the PharmaSim virtual pharmacy environment designed for practicing diagnostic conversations.
Our results show that RL-based agents excel in task completion but lack in asking quality diagnostic questions.
arXiv Detail & Related papers (2024-04-29T14:53:48Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
Computational experiments have emerged as a valuable method for studying complex systems.
accurately representing real social systems in Agent-based Modeling (ABM) is challenging due to the diverse and intricate characteristics of humans.
The integration of Large Language Models (LLMs) has been proposed, enabling agents to possess anthropomorphic abilities.
arXiv Detail & Related papers (2024-02-01T01:17:46Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.
Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.
At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.