Large Linguistic Models: Investigating LLMs' metalinguistic abilities
- URL: http://arxiv.org/abs/2305.00948v3
- Date: Tue, 04 Feb 2025 02:46:10 GMT
- Title: Large Linguistic Models: Investigating LLMs' metalinguistic abilities
- Authors: Gašper Beguš, Maksymilian Dąbkowski, Ryan Rhodes,
- Abstract summary: We show that OpenAI's o1 vastly outperforms other models on tasks involving drawing syntactic trees and phonological generalization.<n>We speculate that OpenAI o1's unique advantage over other models may result from the model's chain-of-thought mechanism.
- Score: 1.0923877073891446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of large language models (LLMs) has recently improved to the point where the models can perform well on many language tasks. We show here that -- for the first time -- the models can also generate valid metalinguistic analyses of language data. We outline a research program where the behavioral interpretability of LLMs on these tasks is tested via prompting. LLMs are trained primarily on text -- as such, evaluating their metalinguistic abilities improves our understanding of their general capabilities and sheds new light on theoretical models in linguistics. We show that OpenAI's o1 vastly outperforms other models on tasks involving drawing syntactic trees and phonological generalization. We speculate that OpenAI o1's unique advantage over other models may result from the model's chain-of-thought mechanism, which mimics the structure of human reasoning used in complex cognitive tasks, such as linguistic analysis.
Related papers
- Sparse Auto-Encoder Interprets Linguistic Features in Large Language Models [40.12943080113246]
We present a systematic and comprehensive causal investigation using sparse auto-encoders (SAEs)
We extract a wide range of linguistic features from six dimensions.
We introduce two indices-Feature Representation Confidence (FRC) and Feature Intervention Confidence (FIC)-to measure the ability of linguistic features to capture and control linguistic phenomena.
arXiv Detail & Related papers (2025-02-27T18:16:47Z) - Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
This study investigates the linguistic understanding of Large Language Models (LLMs) regarding signifier (form) and signified (meaning)
Traditional psycholinguistic evaluations often reflect statistical biases that may misrepresent LLMs' true linguistic capabilities.
We introduce a neurolinguistic approach, utilizing a novel method that combines minimal pair and diagnostic probing to analyze activation patterns across model layers.
arXiv Detail & Related papers (2024-11-12T04:16:44Z) - Linguistically Grounded Analysis of Language Models using Shapley Head Values [2.914115079173979]
We investigate the processing of morphosyntactic phenomena by leveraging a recently proposed method for probing language models via Shapley Head Values (SHVs)
Using the English language BLiMP dataset, we test our approach on two widely used models, BERT and RoBERTa, and compare how linguistic constructions are handled.
Our results show that SHV-based attributions reveal distinct patterns across both models, providing insights into how language models organize and process linguistic information.
arXiv Detail & Related papers (2024-10-17T09:48:08Z) - Small Language Models Also Work With Small Vocabularies: Probing the Linguistic Abilities of Grapheme- and Phoneme-Based Baby Llamas [7.585433383340306]
We show that tokenization-free, phoneme- and grapheme-based language models can achieve strong linguistic performance.
Our findings suggest a promising direction for creating more linguistically plausible language models.
arXiv Detail & Related papers (2024-10-02T12:36:08Z) - Language Models as Models of Language [0.0]
This chapter critically examines the potential contributions of modern language models to theoretical linguistics.
I review a growing body of empirical evidence suggesting that language models can learn hierarchical syntactic structure and exhibit sensitivity to various linguistic phenomena.
I conclude that closer collaboration between theoretical linguists and computational researchers could yield valuable insights.
arXiv Detail & Related papers (2024-08-13T18:26:04Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
We introduce Holmes, a new benchmark designed to assess language models (LMs) linguistic competence.
We use computation-based probing to examine LMs' internal representations regarding distinct linguistic phenomena.
As a result, we meet recent calls to disentangle LMs' linguistic competence from other cognitive abilities.
arXiv Detail & Related papers (2024-04-29T17:58:36Z) - Formal Aspects of Language Modeling [74.16212987886013]
Large language models have become one of the most commonly deployed NLP inventions.
These notes are the accompaniment to the theoretical portion of the ETH Z"urich course on large language models.
arXiv Detail & Related papers (2023-11-07T20:21:42Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
Large Language Models have shown tremendous performance on a variety of natural language processing tasks.
It is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed.
We introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks.
arXiv Detail & Related papers (2023-05-31T04:50:29Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) is designed to investigate LLM competence in the context of specific tasks.
We develop a new approach for performing causal probing interventions using gradient-based adversarial attacks.
We carry out a case study of CALM using these interventions to analyze and compare LLM competence across a variety of lexical inference tasks.
arXiv Detail & Related papers (2023-03-01T08:53:36Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
We propose LERT, a pre-trained language model that is trained on three types of linguistic features along with the original pre-training task.
We carried out extensive experiments on ten Chinese NLU tasks, and the experimental results show that LERT could bring significant improvements.
arXiv Detail & Related papers (2022-11-10T05:09:16Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
Large language models (LLMs) have achieved state-of-the-art performance on a series of natural language understanding tasks.
They might rely on dataset bias and artifacts as shortcuts for prediction.
This has significantly affected their generalizability and adversarial robustness.
arXiv Detail & Related papers (2022-08-25T03:51:39Z) - Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in
Natural Language Understanding [1.827510863075184]
Curriculum is a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena.
We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing model behavior and verifying model learning quality.
arXiv Detail & Related papers (2022-04-13T10:32:03Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
We present an analysis of Transformer-based language model performance across a wide range of model scales.
Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language.
We discuss the application of language models to AI safety and the mitigation of downstream harms.
arXiv Detail & Related papers (2021-12-08T19:41:47Z) - Probing Linguistic Information For Logical Inference In Pre-trained
Language Models [2.4366811507669124]
We propose a methodology for probing linguistic information for logical inference in pre-trained language model representations.
We find that (i) pre-trained language models do encode several types of linguistic information for inference, but there are also some types of information that are weakly encoded.
We have demonstrated language models' potential as semantic and background knowledge bases for supporting symbolic inference methods.
arXiv Detail & Related papers (2021-12-03T07:19:42Z) - A Survey of Knowledge Enhanced Pre-trained Models [28.160826399552462]
We refer to pre-trained language models with knowledge injection as knowledge-enhanced pre-trained language models (KEPLMs)
These models demonstrate deep understanding and logical reasoning and introduce interpretability.
arXiv Detail & Related papers (2021-10-01T08:51:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.