論文の概要: WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
- arxiv url: http://arxiv.org/abs/2406.18510v1
- Date: Wed, 26 Jun 2024 17:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 12:40:34.608371
- Title: WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
- Title(参考訳): WildTeaming at Scale: 脱獄から(逆)言語モデルまで
- Authors: Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, Nouha Dziri,
- Abstract要約: 我々は、WildTeamingを紹介した。これは自動LLM安全リチームフレームワークで、Wild-Chatbotインタラクションをマイニングし、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見する。
WildTeamingは、未確認のフロンティアLSMの脆弱性を明らかにし、最大4.6倍の多様性と敵の攻撃に成功した。
- 参考スコア(独自算出の注目度): 66.34505141027624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
- Abstract(参考訳): このフレームワークは、新しいジェイルブレイク戦術の5.7Kのユニークなクラスタを発見し、新しいジェイルブレイクを体系的に探索するための複数の戦術を構成する。
リクルートされた人間労働者によるレッドチーム作業や、勾配に基づく最適化、LLMによる反復的なリビジョンなどと比較して、我々の研究は、システムを壊すように指示されていないチャットボットユーザーのジェイルブレイクを調査した。
WildTeamingは未確認のフロンティアLSMの脆弱性を明らかにし、最先端のジェイルブレイク手法と比較して最大4.6倍の多様性があり、敵の攻撃に成功した。
ジェイルブレイク評価のためのデータセットは数多く存在するが、モデルウェイトがオープンになっても安全トレーニングデータがクローズされているため、ジェイルブレイクトレーニングのためのオープンソースデータセットはほとんど存在しない。
WildTeamingでは、262Kバニラ(ダイレクトリクエスト)と逆(複雑なジェイルブレーク)のプロンプト-レスポンスペアを備えた、大規模なオープンソース合成安全データセットであるWildJailbreakを作成しています。
過大な安全行動を軽減するために、WildJailbreakは2つの対照的なクエリを提供する。
1)有害なクエリ(バニラ・アンド・逆境)及び
2) 有害なクエリに類似しているが害を含まない良質なクエリ。
WildJailbreakは既存の安全リソースの品質とスケールを大幅に改善するので、安全トレーニング中のデータのスケーリング効果とデータプロパティとモデル機能の相互運用について一意的に調べることができます。
広範にわたる実験を通じて,安全行動の理想的なバランスを可能にする訓練特性を同定する: 過度な拒絶を伴わない適切な安全確保,バニラおよび敵クエリの効果的な処理,そしてもしあるならば,一般の能力を最小限に抑える。
WildJailbeakのすべてのコンポーネントは、モデルのバランスのとれた安全行動を達成するのに役立っている。
関連論文リスト
- SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
LLMによる入力プロンプトの構築を利用して、ユーザプロンプトにジェイルブレイク情報を注入する新しいジェイルブレイク手法を提案する。
提案手法は,AdvBench の文脈でよく知られた5つのオープンソース LLM に対する攻撃成功率を約100% 達成する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
論文 参考訳(メタデータ) (2024-10-31T01:55:33Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - RedAgent: Red Teaming Large Language Models with Context-aware Autonomous Language Agent [24.487441771427434]
我々は,コンテキスト認識型ジェイルブレイクプロンプトを生成するためのマルチエージェントLLMシステムRedAgentを提案する。
我々のシステムは、ほとんどのブラックボックスLSMをたった5つのクエリでジェイルブレイクすることができ、既存のレッドチーム方式の効率を2倍に向上させることができる。
すべての問題を報告し、バグ修正のためにOpenAIとMetaと通信しました。
論文 参考訳(メタデータ) (2024-07-23T17:34:36Z) - Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks [89.54736699767315]
我々は、LLMの有害な知識を直接解き放つことは、脱獄攻撃から守るためのより効果的な方法になり得ると推測する。
Vicuna-7Bの攻撃成功率(ASR)は82.6%から7.7%に低下した。
Llama2-7B-Chatは、約0.1Mの安全アライメントサンプルで微調整されているが、追加の安全システムプロンプトの下でも21.9%のASRを持つ。
論文 参考訳(メタデータ) (2024-07-03T07:14:05Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃の構築と評価を容易にする統合フレームワークであるEasyJailbreakを紹介する。
Selector、Mutator、Constraint、Evaluatorの4つのコンポーネントを使ってJailbreak攻撃を構築する。
10の異なるLSMで検証した結果、さまざまなジェイルブレイク攻撃で平均60%の侵入確率で重大な脆弱性が判明した。
論文 参考訳(メタデータ) (2024-03-18T18:39:53Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - FuzzLLM: A Novel and Universal Fuzzing Framework for Proactively Discovering Jailbreak Vulnerabilities in Large Language Models [11.517609196300217]
FuzzLLMは,大規模言語モデル(LLM)におけるジェイルブレイク脆弱性を積極的にテストし,発見するために設計された,自動ファジリングフレームワークである。
テンプレートを使用してプロンプトの構造的整合性をキャプチャし、制約としてJailbreakクラスの重要な特徴を分離します。
異なるベースクラスを強力なコンボ攻撃に統合し、制約や禁止された質問の要素を変更することで、FazLLMは手作業の少ない効率的なテストを可能にする。
論文 参考訳(メタデータ) (2023-09-11T07:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。