Confident Natural Policy Gradient for Local Planning in $q_π$-realizable Constrained MDPs
- URL: http://arxiv.org/abs/2406.18529v2
- Date: Thu, 07 Nov 2024 21:56:03 GMT
- Title: Confident Natural Policy Gradient for Local Planning in $q_π$-realizable Constrained MDPs
- Authors: Tian Tian, Lin F. Yang, Csaba Szepesvári,
- Abstract summary: The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives.
In this paper, we address the learning problem given linear function approximation with $q_pi$-realizability.
- Score: 44.69257217086967
- License:
- Abstract: The constrained Markov decision process (CMDP) framework emerges as an important reinforcement learning approach for imposing safety or other critical objectives while maximizing cumulative reward. However, the current understanding of how to learn efficiently in a CMDP environment with a potentially infinite number of states remains under investigation, particularly when function approximation is applied to the value functions. In this paper, we address the learning problem given linear function approximation with $q_{\pi}$-realizability, where the value functions of all policies are linearly representable with a known feature map, a setting known to be more general and challenging than other linear settings. Utilizing a local-access model, we propose a novel primal-dual algorithm that, after $\tilde{O}(\text{poly}(d) \epsilon^{-3})$ queries, outputs with high probability a policy that strictly satisfies the constraints while nearly optimizing the value with respect to a reward function. Here, $d$ is the feature dimension and $\epsilon > 0$ is a given error. The algorithm relies on a carefully crafted off-policy evaluation procedure to evaluate the policy using historical data, which informs policy updates through policy gradients and conserves samples. To our knowledge, this is the first result achieving polynomial sample complexity for CMDP in the $q_{\pi}$-realizable setting.
Related papers
- A safe exploration approach to constrained Markov decision processes [7.036452261968767]
We consider discounted infinite horizon constrained Markov decision processes (CMDPs)
The goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints.
Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing a model-free and simulator-free algorithm.
arXiv Detail & Related papers (2023-12-01T13:16:39Z) - Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs [17.62509045102346]
This paper considers the best policy identification problem in online Constrained Markov Decision Processes (CMDPs)
We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability.
Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy.
arXiv Detail & Related papers (2023-09-27T04:33:09Z) - Confident Approximate Policy Iteration for Efficient Local Planning in
$q^\pi$-realizable MDPs [2.5652904661855076]
We consider approximate dynamic programming in $gamma$-discounted Markov decision processes.
Our first contribution is a new variant of Approximate Policy Iteration (API), called Confident Approximate Policy Iteration (CAPI)
CAPI computes a deterministic stationary policy with an optimal error bound scaling linearly with the product of the effective horizon $H$ and the worst-case approximation error $epsilon$ of the action-value functions of stationary policies.
arXiv Detail & Related papers (2022-10-27T20:19:31Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
In episodic Block MDPs, the decision maker has access to rich observations or contexts generated from a small number of latent states.
We are first interested in estimating the latent state decoding function based on data generated under a fixed behavior policy.
We then study the problem of learning near-optimal policies in the reward-free framework.
arXiv Detail & Related papers (2022-08-17T18:49:53Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - On Query-efficient Planning in MDPs under Linear Realizability of the
Optimal State-value Function [14.205660708980988]
We consider the problem of local planning in fixed-horizon Markov Decision Processes (MDPs) with a generative model.
A recent lower bound established that the related problem when the action-value function of the optimal policy is linearly realizable requires an exponential number of queries.
In this work, we establish that poly$(H, d)$ learning is possible (with state value function realizability) whenever the action set is small.
arXiv Detail & Related papers (2021-02-03T13:23:15Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.