Towards Compositionality in Concept Learning
- URL: http://arxiv.org/abs/2406.18534v1
- Date: Wed, 26 Jun 2024 17:59:30 GMT
- Title: Towards Compositionality in Concept Learning
- Authors: Adam Stein, Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong,
- Abstract summary: We show that existing unsupervised concept extraction methods find concepts which are not compositional.
We propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties.
CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks.
- Score: 20.960438848942445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
Related papers
- CusConcept: Customized Visual Concept Decomposition with Diffusion Models [13.95568624067449]
We propose a two-stage framework, CusConcept, to extract customized visual concept embedding vectors.
In the first stage, CusConcept employs a vocabularies-guided concept decomposition mechanism.
In the second stage, joint concept refinement is performed to enhance the fidelity and quality of generated images.
arXiv Detail & Related papers (2024-10-01T04:41:44Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user.
Here, we present a workflow for user-driven data collection in both text and image domains.
We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs)
arXiv Detail & Related papers (2024-04-10T13:47:22Z) - Concept Bottleneck with Visual Concept Filtering for Explainable Medical
Image Classification [16.849592713393896]
Concept Bottleneck Models (CBMs) enable interpretable image classification by utilizing human-understandable concepts as intermediate targets.
We propose a visual activation score that measures whether the concept contains visual cues or not.
Computed visual activation scores are then used to filter out the less visible concepts, thus resulting in a final concept set with visually meaningful concepts.
arXiv Detail & Related papers (2023-08-23T05:04:01Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
We introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts and 33K composite text prompts.
We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions.
Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
arXiv Detail & Related papers (2023-06-07T18:00:38Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Automatic Concept Extraction for Concept Bottleneck-based Video
Classification [58.11884357803544]
We present an automatic Concept Discovery and Extraction module that rigorously composes a necessary and sufficient set of concept abstractions for concept-based video classification.
Our method elicits inherent complex concept abstractions in natural language to generalize concept-bottleneck methods to complex tasks.
arXiv Detail & Related papers (2022-06-21T06:22:35Z) - Visual Concepts Tokenization [65.61987357146997]
We propose an unsupervised transformer-based Visual Concepts Tokenization framework, dubbed VCT, to perceive an image into a set of disentangled visual concept tokens.
To obtain these concept tokens, we only use cross-attention to extract visual information from the image tokens layer by layer without self-attention between concept tokens.
We further propose a Concept Disentangling Loss to facilitate that different concept tokens represent independent visual concepts.
arXiv Detail & Related papers (2022-05-20T11:25:31Z) - Unsupervised Learning of Compositional Energy Concepts [70.11673173291426]
We propose COMET, which discovers and represents concepts as separate energy functions.
Comet represents both global concepts as well as objects under a unified framework.
arXiv Detail & Related papers (2021-11-04T17:46:12Z) - Visually Grounded Concept Composition [31.981204314287282]
We learn the grounding of both primitive and all composed concepts by aligning them to images.
We show that learning to compose leads to more robust grounding results, measured in text-to-image matching accuracy.
arXiv Detail & Related papers (2021-09-29T00:38:58Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.