Knowledge graphs for empirical concept retrieval
- URL: http://arxiv.org/abs/2404.07008v1
- Date: Wed, 10 Apr 2024 13:47:22 GMT
- Title: Knowledge graphs for empirical concept retrieval
- Authors: Lenka Tětková, Teresa Karen Scheidt, Maria Mandrup Fogh, Ellen Marie Gaunby Jørgensen, Finn Årup Nielsen, Lars Kai Hansen,
- Abstract summary: Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user.
Here, we present a workflow for user-driven data collection in both text and image domains.
We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs)
- Score: 1.06378109904813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user, viz.\ as a tool for personalized explainability. An important class of concept-based explainability methods is constructed with empirically defined concepts, indirectly defined through a set of positive and negative examples, as in the TCAV approach (Kim et al., 2018). While it is appealing to the user to avoid formal definitions of concepts and their operationalization, it can be challenging to establish relevant concept datasets. Here, we address this challenge using general knowledge graphs (such as, e.g., Wikidata or WordNet) for comprehensive concept definition and present a workflow for user-driven data collection in both text and image domains. The concepts derived from knowledge graphs are defined interactively, providing an opportunity for personalization and ensuring that the concepts reflect the user's intentions. We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs) (Crabbe and van der Schaar, 2022). We show that CAVs and CARs based on these empirical concept datasets provide robust and accurate explanations. Importantly, we also find good alignment between the models' representations of concepts and the structure of knowledge graphs, i.e., human representations. This supports our conclusion that knowledge graph-based concepts are relevant for XAI.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Towards Compositionality in Concept Learning [20.960438848942445]
We show that existing unsupervised concept extraction methods find concepts which are not compositional.
We propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties.
CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks.
arXiv Detail & Related papers (2024-06-26T17:59:30Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
Recent interpretability methods propose using concept-based explanations to translate internal representations of deep learning models into a language that humans are familiar with: concepts.
This requires understanding which concepts are present in the representation space of a neural network.
In this work, we investigate three properties of Concept Activation Vectors (CAVs), which are learnt using a probe dataset of concept exemplars.
We introduce tools designed to detect the presence of these properties, provide insight into how they affect the derived explanations, and provide recommendations to minimise their impact.
arXiv Detail & Related papers (2024-04-04T17:46:20Z) - Simple Mechanisms for Representing, Indexing and Manipulating Concepts [46.715152257557804]
We will argue that learning a concept could be done by looking at its moment statistics matrix to generate a concrete representation or signature of that concept.
When the concepts are intersected', signatures of the concepts can be used to find a common theme across a number of related intersected' concepts.
arXiv Detail & Related papers (2023-10-18T17:54:29Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
We introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts and 33K composite text prompts.
We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions.
Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
arXiv Detail & Related papers (2023-06-07T18:00:38Z) - Concept-Based Explanations for Tabular Data [0.0]
We propose a concept-based explainability for Deep Neural Networks (DNNs)
We show the validity of our method in generating interpretability results that match the human-level intuitions.
We also propose a notion of fairness based on TCAV that quantifies what layer of DNN has learned representations that lead to biased predictions.
arXiv Detail & Related papers (2022-09-13T02:19:29Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and
Acquisition at Inference Time [49.067846763204564]
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner.
We introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way.
arXiv Detail & Related papers (2022-06-30T06:24:45Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
Concept discovery is important for bridging the gap between non-deep learning experts and model end-users.
Current approaches include hand-crafting concept datasets and then converting them to latent space directions.
In this study, we offer another two approaches to guide user discovery of meaningful concepts, one based on multiple hypothesis testing, and another on interactive visualization.
arXiv Detail & Related papers (2022-02-09T22:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.