A PST Algorithm for FPs Suppression in Two-stage CNN Detection Methods
- URL: http://arxiv.org/abs/2406.18553v1
- Date: Fri, 24 May 2024 08:26:14 GMT
- Title: A PST Algorithm for FPs Suppression in Two-stage CNN Detection Methods
- Authors: Qiang Guo,
- Abstract summary: This paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods learn to distinguish the pedestrian and non-pedestrian samples.
With the help of the proposed algorithm, the detection accuracy of the MetroNext, an smaller and accurate metro passenger detector, is further improved.
- Score: 2.288618928064061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide spectrum of promising applications, the major challenge of which is False Positives (FPs) that occur during pedestrian detection. The emergence various Convolutional Neural Network-based detection strategies substantially enhance the pedestrian detection accuracy but still not well solve this problem. This paper deeply analysis the detection framework of the two-stage CNN detection methods and find out false positives in detection results is due to its training strategy miss classify some false proposals, thus weakens the classification capability of following subnetwork and hardly to suppress false ones. To solve this problem, This paper proposes a pedestrian-sensitive training algorithm to effectively help two-stage CNN detection methods learn to distinguish the pedestrian and non-pedestrian samples and suppress the false positives in final detection results. The core of the proposed training algorithm is to redesign the training proposal generating pipeline of the two-stage CNN detection methods, which can avoid a certain number of false ones that mislead its training process. With the help of the proposed algorithm, the detection accuracy of the MetroNext, an smaller and accurate metro passenger detector, is further improved, which further decreases false ones in its metro passengers detection results. Based on various challenging benchmark datasets, experiment results have demonstrated that feasibility of the proposed algorithm to improve pedestrian detection accuracy by removing the false positives. Compared with the competitors, MetroNext-PST demonstrates better overall prediction performance in accuracy, total number of parameters, and inference time, thus it can become a practical solution for hunting pedestrian tailored for mobile and edge devices.
Related papers
- Reproduction of scan B-statistic for kernel change-point detection algorithm [10.49860279555873]
Change-point detection has garnered significant attention due to its broad range of applications.
In this paper, we reproduce a recently proposed online change-point detection algorithm based on an efficient kernel-based scan B-statistic.
Our numerical experiments demonstrate that the scan B-statistic consistently delivers superior performance.
arXiv Detail & Related papers (2024-08-23T15:12:31Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
We propose a simple pretext task that provides an effective pre-training for the region proposal network (RPN)
In comparison with multi-stage detectors without RPN pre-training, our approach is able to consistently improve downstream task performance.
arXiv Detail & Related papers (2022-11-16T16:28:18Z) - Probabilistic Approach for Road-Users Detection [0.0]
One of the major challenges in state-of-the-art deep-learning based object detection are false positives which occur with overconfident scores.
This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing.
It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives.
arXiv Detail & Related papers (2021-12-02T16:02:08Z) - Variational Pedestrian Detection [33.52588723666144]
We develop a unique perspective of pedestrian detection as a variational inference problem.
We formulate a novel and efficient algorithm for pedestrian detection by modeling the dense proposals as a latent variable.
Our method can also be flexibly applied to two-stage detectors, achieving notable performance enhancement.
arXiv Detail & Related papers (2021-04-26T08:06:41Z) - AmphibianDetector: adaptive computation for moving objects detection [0.913755431537592]
We propose an approach to object detection which makes it possible to reduce the number of false-positive detections.
The proposed approach is a modification of CNN already trained for object detection task.
The efficiency of the proposed approach was demonstrated on the open dataset "CDNet2014 pedestrian"
arXiv Detail & Related papers (2020-11-15T12:37:44Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Sequential Drift Detection in Deep Learning Classifiers [4.022057598291766]
We utilize neural network embeddings to detect data drift by formulating the drift detection within an appropriate sequential decision framework.
We introduce a loss function which evaluates an algorithm's ability to balance these two concerns.
arXiv Detail & Related papers (2020-07-31T14:46:21Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.