A Full-Stage Refined Proposal Algorithm for Suppressing False Positives in Two-Stage CNN-Based Detection Methods
- URL: http://arxiv.org/abs/2508.01382v1
- Date: Sat, 02 Aug 2025 14:25:37 GMT
- Title: A Full-Stage Refined Proposal Algorithm for Suppressing False Positives in Two-Stage CNN-Based Detection Methods
- Authors: Qiang Guo, Rubo Zhang, Bingbing Zhang, Junjie Liu, Jianqing Liu,
- Abstract summary: This paper proposes a Full-stage Refined Proposal (FRP) algorithm aimed at eliminating false positives within a two-stage CNN-based pedestrian detection framework.<n>Various experiments conducted on multiple benchmarks and the SY-Metro datasets demonstrate that the model, supported by different combinations of the FRP algorithm, can effectively eliminate false positives to varying extents.
- Score: 8.92097883582772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: False positives in pedestrian detection remain a challenge that has yet to be effectively resolved. To address this issue, this paper proposes a Full-stage Refined Proposal (FRP) algorithm aimed at eliminating these false positives within a two-stage CNN-based pedestrian detection framework. The main innovation of this work lies in employing various pedestrian feature re-evaluation strategies to filter out low-quality pedestrian proposals during both the training and testing stages. Specifically, in the training phase, the Training mode FRP algorithm (TFRP) introduces a novel approach for validating pedestrian proposals to effectively guide the model training process, thereby constructing a model with strong capabilities for false positive suppression. During the inference phase, two innovative strategies are implemented: the Classifier-guided FRP (CFRP) algorithm integrates a pedestrian classifier into the proposal generation pipeline to yield high-quality proposals through pedestrian feature evaluation, and the Split-proposal FRP (SFRP) algorithm vertically divides all proposals, sending both the original and the sub-region proposals to the subsequent subnetwork to evaluate their confidence scores, filtering out those with lower sub-region pedestrian confidence scores. As a result, the proposed algorithm enhances the model's ability to suppress pedestrian false positives across all stages. Various experiments conducted on multiple benchmarks and the SY-Metro datasets demonstrate that the model, supported by different combinations of the FRP algorithm, can effectively eliminate false positives to varying extents. Furthermore, experiments conducted on embedded platforms underscore the algorithm's effectiveness in enhancing the comprehensive pedestrian detection capabilities of the small pedestrian detector in resource-constrained edge devices.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.<n>We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - A PST Algorithm for FPs Suppression in Two-stage CNN Detection Methods [2.288618928064061]
This paper proposes a pedestrian-sensitive training algorithm to help two-stage CNN detection methods learn to distinguish the pedestrian and non-pedestrian samples.
With the help of the proposed algorithm, the detection accuracy of the MetroNext, an smaller and accurate metro passenger detector, is further improved.
arXiv Detail & Related papers (2024-05-24T08:26:14Z) - Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk
Estimator Approach [13.887632153924512]
We introduce task-based deep learning frameworks, denoted as Deep RLS and Deep EASI.
These architectures transform the iterations of the original algorithms into layers of a deep neural network, enabling efficient source signal estimation.
To further enhance performance, we propose training these deep unrolled networks utilizing a surrogate loss function grounded on Stein's unbiased risk estimator (SURE)
arXiv Detail & Related papers (2023-07-31T14:26:41Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.
We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
arXiv Detail & Related papers (2023-06-30T14:19:44Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Online Active Proposal Set Generation for Weakly Supervised Object
Detection [41.385545249520696]
weakly supervised object detection methods only require image-level annotations.
Online proposal sampling is an intuitive solution to these issues.
Our proposed OPG algorithm shows consistent and significant improvement on both datasets PASCAL VOC 2007 and 2012.
arXiv Detail & Related papers (2021-01-20T02:20:48Z) - RRPN++: Guidance Towards More Accurate Scene Text Detection [0.30458514384586394]
We propose RRPN++ to exploit the potential of RRPN-based model by several improvements.
Based on RRPN, we propose the Anchor-free Pyramid Proposal Networks (APPN) to generate first-stage proposals.
In our second stage, both the detection branch and the recognition branch are incorporated to perform multi-task learning.
arXiv Detail & Related papers (2020-09-28T08:00:35Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously.
The former suffers much from extreme foreground-background imbalance due to the large number of anchors.
This paper proposes a novel framework to replace the classification task in one-stage detectors with a ranking task.
arXiv Detail & Related papers (2020-08-17T13:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.