Rotation Averaging: A Primal-Dual Method and Closed-Forms in Cycle Graphs
- URL: http://arxiv.org/abs/2406.18564v1
- Date: Wed, 29 May 2024 21:46:39 GMT
- Title: Rotation Averaging: A Primal-Dual Method and Closed-Forms in Cycle Graphs
- Authors: Gabriel Moreira, Manuel Marques, João Paulo Costeira,
- Abstract summary: A benchmark of geometric reconstruction, averaging seeks the set of absolute settings that optimally explains a set of measured relative orientations between them.
We propose a novel primal-dual cycle method motivated by the widely accepted spectral theory.
- Score: 6.511636092857915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A cornerstone of geometric reconstruction, rotation averaging seeks the set of absolute rotations that optimally explains a set of measured relative orientations between them. In addition to being an integral part of bundle adjustment and structure-from-motion, the problem of synchronizing rotations also finds applications in visual simultaneous localization and mapping, where it is used as an initialization for iterative solvers, and camera network calibration. Nevertheless, this optimization problem is both non-convex and high-dimensional. In this paper, we address it from a maximum likelihood estimation standpoint and make a twofold contribution. Firstly, we set forth a novel primal-dual method, motivated by the widely accepted spectral initialization. Further, we characterize stationary points of rotation averaging in cycle graphs topologies and contextualize this result within spectral graph theory. We benchmark the proposed method in multiple settings and certify our solution via duality theory, achieving a significant gain in precision and performance.
Related papers
- Rotation Synchronization via Deep Matrix Factorization [24.153207403324917]
We focus on the formulation of rotation synchronization via neural networks.
Inspired by deep matrix completion, we express rotation synchronization in terms of matrix factorization with a deep neural network.
Our formulation exhibits implicit regularization properties and, more importantly, is unsupervised.
arXiv Detail & Related papers (2023-05-09T08:46:05Z) - E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs [61.552125054227595]
A new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas.
Based on E-Graph, the rotation estimation problem becomes simpler and more elegant.
We embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model.
arXiv Detail & Related papers (2022-07-20T16:11:48Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Rotation Averaging in a Split Second: A Primal-Dual Method and a
Closed-Form for Cycle Graphs [2.1423963702744597]
A cornerstone of geometric reconstruction averaging seeks the set of absolute rotations that optimally explains a set of measured relative orientations between them.
Our proposed methods achieve a significant gain both in precision and performance.
arXiv Detail & Related papers (2021-09-16T15:22:28Z) - On the Robustness of Multi-View Rotation Averaging [77.09542018140823]
We introduce the $epsilon$-cycle consistency term into the solver.
We implicitly constrain the negative effect of erroneous measurements by weight reducing.
Experiment results demonstrate that our proposed approach outperforms state of the arts on various benchmarks.
arXiv Detail & Related papers (2021-02-09T05:47:37Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Synchronizing Probability Measures on Rotations via Optimal Transport [26.110033098056334]
We introduce a new paradigm,textitmeasure synchronization$, for synchronizing graphs with measure-valued uncertainties.
In particular, we aim estimating absolute orientations of absolute rotations on a graph on-on-manis.
arXiv Detail & Related papers (2020-04-01T18:44:18Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.