Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
- URL: http://arxiv.org/abs/2406.18588v1
- Date: Fri, 7 Jun 2024 07:32:41 GMT
- Title: Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
- Authors: Junhao Chen, Manyi Li, Zherong Pan, Xifeng Gao, Changhe Tu,
- Abstract summary: We study the geometric properties of the diffusion model, whose forward diffusion process and reverse generation process construct a series of distributions on a manifold.
We show that the generation rate is highly correlated with intuitive visual properties, such as visual saliency, of the image component.
We propose an efficient and differentiable scheme to estimate the generation rate for a given image component over time, giving rise to a generation curve.
- Score: 25.632973225129728
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep generative models learn the data distribution, which is concentrated on a low-dimensional manifold. The geometric analysis of distribution transformation provides a better understanding of data structure and enables a variety of applications. In this paper, we study the geometric properties of the diffusion model, whose forward diffusion process and reverse generation process construct a series of distributions on manifolds which vary over time. Our key contribution is the introduction of generation rate, which corresponds to the local deformation of manifold over time around an image component. We show that the generation rate is highly correlated with intuitive visual properties, such as visual saliency, of the image component. Further, we propose an efficient and differentiable scheme to estimate the generation rate for a given image component over time, giving rise to a generation curve. The differentiable nature of our scheme allows us to control the shape of the generation curve via optimization. Using different loss functions, our generation curve matching algorithm provides a unified framework for a range of image manipulation tasks, including semantic transfer, object removal, saliency manipulation, image blending, etc. We conduct comprehensive analytical evaluations to support our findings and evaluate our framework on various manipulation tasks. The results show that our method consistently leads to better manipulation results, compared to recent baselines.
Related papers
- Edge-preserving noise for diffusion models [4.435514696080208]
We present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM)
In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise.
We show that our model's generative process converges faster to results that more closely match the target distribution.
arXiv Detail & Related papers (2024-10-02T13:29:52Z) - A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
of Data [55.748186000425996]
Recent advancements show that diffusion models can generate high-quality images.
We study this phenomenon in a hierarchical generative model of data.
Our analysis characterises the relationship between time and scale in diffusion models.
arXiv Detail & Related papers (2024-02-26T19:52:33Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - NeurInt : Learning to Interpolate through Neural ODEs [18.104328632453676]
We propose a novel generative model that learns a distribution of trajectories between two images.
We demonstrate our approach's effectiveness in generating images improved quality as well as its ability to learn a diverse distribution over smooth trajectories for any pair of real source and target images.
arXiv Detail & Related papers (2021-11-07T16:31:18Z) - The Geometry of Deep Generative Image Models and its Applications [0.0]
Generative adversarial networks (GANs) have emerged as a powerful unsupervised method to model the statistical patterns of real-world data sets.
These networks are trained to map random inputs in their latent space to new samples representative of the learned data.
The structure of the latent space is hard to intuit due to its high dimensionality and the non-linearity of the generator.
arXiv Detail & Related papers (2021-01-15T07:57:33Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
Interpretable generation process is beneficial to various image editing applications.
We propose a framework to discover interpretable directions in the latent space given arbitrary pre-trained generative adversarial networks.
arXiv Detail & Related papers (2020-11-24T02:18:08Z) - Network Bending: Expressive Manipulation of Deep Generative Models [0.2062593640149624]
We introduce a new framework for manipulating and interacting with deep generative models that we call network bending.
We show how it allows for the direct manipulation of semantically meaningful aspects of the generative process as well as allowing for a broad range of expressive outcomes.
arXiv Detail & Related papers (2020-05-25T21:48:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.