Edge-preserving noise for diffusion models
- URL: http://arxiv.org/abs/2410.01540v2
- Date: Fri, 25 Oct 2024 09:44:10 GMT
- Title: Edge-preserving noise for diffusion models
- Authors: Jente Vandersanden, Sascha Holl, Xingchang Huang, Gurprit Singh,
- Abstract summary: We present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM)
In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise.
We show that our model's generative process converges faster to results that more closely match the target distribution.
- Score: 4.435514696080208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical generative diffusion models learn an isotropic Gaussian denoising process, treating all spatial regions uniformly, thus neglecting potentially valuable structural information in the data. Inspired by the long-established work on anisotropic diffusion in image processing, we present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM). In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise. We show that our model's generative process converges faster to results that more closely match the target distribution. We demonstrate its capability to better learn the low-to-mid frequencies within the dataset, which plays a crucial role in representing shapes and structural information. Our edge-preserving diffusion process consistently outperforms state-of-the-art baselines in unconditional image generation. It is also more robust for generative tasks guided by a shape-based prior, such as stroke-to-image generation. We present qualitative and quantitative results showing consistent improvements (FID score) of up to 30% for both tasks. We provide source code and supplementary content via the public domain edge-preserving-diffusion.mpi-inf.mpg.de .
Related papers
- Tracing the Roots: Leveraging Temporal Dynamics in Diffusion Trajectories for Origin Attribution [29.744990195972587]
Diffusion models have revolutionized image synthesis, garnering significant research interest in recent years.
We study discriminative algorithms operating on diffusion trajectories.
Our approach demonstrates the presence of patterns across steps that can be leveraged for classification.
arXiv Detail & Related papers (2024-11-12T00:20:11Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - Enhancing Semantic Fidelity in Text-to-Image Synthesis: Attention
Regulation in Diffusion Models [23.786473791344395]
Cross-attention layers in diffusion models tend to disproportionately focus on certain tokens during the generation process.
We introduce attention regulation, an on-the-fly optimization approach at inference time to align attention maps with the input text prompt.
Experiment results show that our method consistently outperforms other baselines.
arXiv Detail & Related papers (2024-03-11T02:18:27Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Image Embedding for Denoising Generative Models [0.0]
We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
arXiv Detail & Related papers (2022-12-30T17:56:07Z) - Denoising Diffusion Gamma Models [91.22679787578438]
We introduce the Denoising Diffusion Gamma Model (DDGM) and show that noise from Gamma distribution provides improved results for image and speech generation.
Our approach preserves the ability to efficiently sample state in the training diffusion process while using Gamma noise.
arXiv Detail & Related papers (2021-10-10T10:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.