論文の概要: Robust Low-Cost Drone Detection and Classification in Low SNR Environments
- arxiv url: http://arxiv.org/abs/2406.18624v3
- Date: Thu, 07 Nov 2024 10:35:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:36:00.779676
- Title: Robust Low-Cost Drone Detection and Classification in Low SNR Environments
- Title(参考訳): 低SNR環境下でのロバストな低コストドローン検出と分類
- Authors: Stefan Glüge, Matthias Nyfeler, Ahmad Aghaebrahimian, Nicola Ramagnano, Christof Schüpbach,
- Abstract要約: ドローンを検知し、分類する能力について、様々な畳み込みニューラルネットワーク(CNN)を評価した。
本稿では,標準コンピュータ,ソフトウェア定義無線(SDR),アンテナを用いた低コストドローン検知システムについて紹介する。
- 参考スコア(独自算出の注目度): 0.9087641068861043
- License:
- Abstract: The proliferation of drones, or unmanned aerial vehicles (UAVs), has raised significant safety concerns due to their potential misuse in activities such as espionage, smuggling, and infrastructure disruption. This paper addresses the critical need for effective drone detection and classification systems that operate independently of UAV cooperation. We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones using spectrogram data derived from consecutive Fourier transforms of signal components. The focus is on model robustness in low signal-to-noise ratio (SNR) environments, which is critical for real-world applications. A comprehensive dataset is provided to support future model development. In addition, we demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna, validated through real-world field testing. On our development dataset, all models consistently achieved an average balanced classification accuracy of >= 85% at SNR > -12dB. In the field test, these models achieved an average balance accuracy of > 80%, depending on transmitter distance and antenna direction. Our contributions include: a publicly available dataset for model development, a comparative analysis of CNN for drone detection under low SNR conditions, and the deployment and field evaluation of a practical, low-cost detection system.
- Abstract(参考訳): 無人航空機(UAV)の拡散は、スパイ活動、密輸、インフラ破壊などの活動で誤用される可能性があるため、重大な安全上の懸念を引き起こしている。
本稿では,UAV協力とは無関係に機能する効果的なドローン検知・分類システムの必要性について論じる。
信号成分の連続フーリエ変換から導かれるスペクトルデータを用いて、様々な畳み込みニューラルネットワーク(CNN)を検出・分類する能力について評価した。
その焦点は、SNR(low signal-to-noise ratio)環境におけるモデルロバスト性であり、これは現実世界のアプリケーションにとって重要なものである。
将来のモデル開発をサポートするために、包括的なデータセットが提供される。
さらに,ソフトウェア定義無線(SDR)とアンテナを用いた低コストなドローン検知システムを実世界のフィールドテストにより検証した。
開発データセットでは,SNR > -12dB で平均平衡分類精度 >= 85% を達成した。
フィールドテストでは、送信機距離とアンテナ方向に応じて平均バランス精度が80%まで向上した。
我々の貢献は、モデル開発のための公開データセット、低SNR条件下でのドローン検出のためのCNNの比較分析、実用的な低コスト検出システムの展開とフィールド評価である。
関連論文リスト
- SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - MMAUD: A Comprehensive Multi-Modal Anti-UAV Dataset for Modern Miniature
Drone Threats [37.981623262267036]
MMAUDは、ドローン検出、UAV型分類、軌道推定に焦点を当てて、現代の脅威検出手法における重要なギャップに対処する。
これは、熱とRGBを使用して特定のベタージュポイントでキャプチャされたデータセットよりも忠実度の高い実世界のシナリオに対処するための、ユニークな頭上の空中検出を提供する。
提案するモダリティは費用対効果が高く適応性が高いため,UAV脅威検出ツールの実験と実装が可能である。
論文 参考訳(メタデータ) (2024-02-06T04:57:07Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - A Two-Dimensional Deep Network for RF-based Drone Detection and
Identification Towards Secure Coverage Extension [7.717171534776764]
時間領域情報と周波数領域情報の両方を含む生信号から2次元特徴を抽出するために,ショートタイムフーリエ変換を用いる。
次に、ResNet構造で構築された畳み込みニューラルネットワーク(CNN)を用いて、マルチクラス分類を実現する。
実験の結果,提案したResNet-STFTは,拡張データセット上でより精度が高く,より高速に収束できることがわかった。
論文 参考訳(メタデータ) (2023-08-26T15:43:39Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
インテリジェントな無線デバイス群は、ドローンの助けを借りて共有ニューラルネットワークモデルを訓練する。
提案したフレームワークは,トレーニングの大幅な高速化を実現し,ドローンホバリング時間の平均24%と87%の削減を実現している。
論文 参考訳(メタデータ) (2023-03-03T23:46:25Z) - Anomaly Detection of UAV State Data Based on Single-class Triangular
Global Alignment Kernel Extreme Learning Machine [13.068075546963847]
無人航空機(UAV)は広く使われ、軍用および民間の分野で多くの要求に応えている。
本研究では,無人機から収集した異常なデータを検知し,ドローンの安全性を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-18T12:43:04Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。