Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration
- URL: http://arxiv.org/abs/2402.05022v2
- Date: Tue, 28 May 2024 22:05:41 GMT
- Title: Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration
- Authors: Anson Kost, Lucas Johns, Huaiyu Duan,
- Abstract summary: We develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes.
These models demonstrate the emergence of coherent flavor oscillations from the particle perspective.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective neutrino oscillations are typically studied using the lowest-order quantum kinetic equation, also known as the mean-field approximation. However, some recent quantum many-body simulations suggest that quantum entanglement among neutrinos may be important and may result in flavor equilibration of the neutrino gas. In this work, we develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes. A key parameter of our models is $\gamma=\mu \Delta z$, where $\mu$ is the neutrino coupling strength, which is proportional to the neutrino density, and $\Delta z$ is the duration over which a pair of neutrinos can interact each time. Our models reduce to the mean-field approach in the limit $\gamma\to0$ and achieve flavor equilibration in time $t \gg (\gamma\mu)^{-1}$. These models demonstrate the emergence of coherent flavor oscillations from the particle perspective and may help elucidate the role of quantum entanglement in collective neutrino oscillations.
Related papers
- Quantum coherence in neutrino spin-flavor oscillations [0.0]
Coherence is a fundamental concept in quantum mechanics and can be precisely defined within quantum resource theory.
Previous studies on quantum coherence have focused on neutrino flavor oscillations (FO)
In this work, we investigate quantum coherence in neutrino SFO with three flavor mixing within the interstellar as well as intergalactic magnetic fields.
arXiv Detail & Related papers (2024-07-23T17:53:33Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Three-flavor Collective Neutrino Oscillations on D-Wave's {\tt Advantage} Quantum Annealer [0.0]
Simulations of Dirac neutrino-neutrino interactions performed on D-Wave Inc.'s tt Advantage 5000+ qubit quantum annealer.
The D-Wave tt Advantage annealer is shown to be able to reproduce time evolution with the precision of a classical machine for small number of neutrinos.
However, it suffers from poor scaling in qubit-count with the number of neutrinos.
arXiv Detail & Related papers (2024-05-30T19:27:19Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Role of non-gaussian quantum fluctuations in neutrino entanglement [0.0]
neutrino-neutrino coherent scattering can give rise to nontrivial quantum entanglement among neutrinos.
We observe that the entanglement induced by the coupling leads to strong delocalization in phase-space with largely non-Gaussian quantum fluctuations.
The link between the neutrino entanglement and quantum fluctuations is illustrated using the one- and two-neutrino entropy.
arXiv Detail & Related papers (2022-05-19T08:30:58Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Intrinsic quantum coherence in particle oscillations [0.0]
In this talk, several inconsistencies of the standard approach to particle oscillations will be explained.
The massive neutrino states are interpreted as quasiparticles on a vacuum condensate of "Cooper pairs" of massless neutrinos.
The newly defined oscillating particle states are for neutrino oscillations what the Klauder--Sudarshan--Glauber coherent states are for quantum optics.
arXiv Detail & Related papers (2020-12-29T17:35:51Z) - The Neutrino Casimir Force [77.34726150561087]
We calculate the neutrino Casimir force between plates, allowing for two different mass eigenstates within the loop.
We discuss the possibility of distinguishing whether neutrinos are Majorana or Dirac fermions using these quantum forces.
arXiv Detail & Related papers (2020-03-24T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.