論文の概要: CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
- arxiv url: http://arxiv.org/abs/2406.18684v1
- Date: Wed, 26 Jun 2024 18:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 18:07:31.624493
- Title: CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
- Title(参考訳): CSI4Free: ポース分類改善のためのGAN強化mmWave CSI
- Authors: Nabeel Nisar Bhat, Rafael Berkvens Jeroen Famaey,
- Abstract要約: COTS Wi-Fiセンシングの分野では、顕著な研究の欠如がある。
我々は,合成ミリ波チャネル状態情報(CSI)を生成できる手法を開発した。
特に,既存のデータセット上にGAN(Generative Adversarial Network)を使用して,3万以上のCSIサンプルを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Joint Communication and Sensing (JC&S), has demonstrated significant success, particularly in utilizing sub-6 GHz frequencies with commercial-off-the-shelf (COTS) Wi-Fi devices for applications such as localization, gesture recognition, and pose classification. Deep learning and the existence of large public datasets has been pivotal in achieving such results. However, at mmWave frequencies (30-300 GHz), which has shown potential for more accurate sensing performance, there is a noticeable lack of research in the domain of COTS Wi-Fi sensing. Challenges such as limited research hardware, the absence of large datasets, limited functionality in COTS hardware, and the complexities of data collection present obstacles to a comprehensive exploration of this field. In this work, we aim to address these challenges by developing a method that can generate synthetic mmWave channel state information (CSI) samples. In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples. The augmented samples exhibit a remarkable degree of consistency with the original data, as indicated by the notably high GAN-train and GAN-test scores. Furthermore, we integrate the augmented samples in training a pose classification model. We observe that the augmented samples complement the real data and improve the generalization of the classification model.
- Abstract(参考訳): 近年、JC&S(Joint Communication and Sensing)は、特に、ローカライゼーション、ジェスチャー認識、ポーズ分類などの用途に、商用オフ・ザ・シェルフ(COTS)のWi-Fiデバイスを用いたサブ6GHzの周波数の利用において、大きな成功を収めている。
ディープラーニングと大規模な公開データセットの存在は、このような結果を達成する上で重要な役割を担っている。
しかし、より正確なセンシング性能を示すミリ波周波数(30-300GHz)では、COTS Wi-Fiセンシングの分野では顕著な研究の欠如がある。
研究ハードウェアの制限、大規模なデータセットの欠如、COTSハードウェアの機能の制限、データ収集の複雑さといった課題は、この分野を包括的に探究するための障害となっている。
本研究では,合成ミリ波チャネル状態情報(CSI)を生成できる手法を開発することにより,これらの課題に対処することを目的とする。
特に,既存のデータセット上にGAN(Generative Adversarial Network)を使用して,3万以上のCSIサンプルを生成する。
GAN-trainとGAN-testスコアで示されるように、強化されたサンプルは元のデータと顕著な整合性を示す。
さらに、ポーズ分類モデルのトレーニングに強化サンプルを統合する。
拡張サンプルが実際のデータを補完し、分類モデルの一般化を改善することを観察する。
関連論文リスト
- DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data [9.531834233076934]
本稿では,畳み込みニューラルネットワークと双方向Gated Recurrent Unitを併用して,局所的特徴とグローバルな特徴をそれぞれ学習する新しいディープラーニングモデルを提案する。
特に、このモデルはデータセット全体で平均3.37%の精度と2.85%のF1スコアの絶対的な改善を実現している。
論文 参考訳(メタデータ) (2024-03-29T06:24:07Z) - Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human
Activity Recognition [1.7404865362620803]
WiFi Channel State Information (CSI) は、屋内環境におけるコンタクトレスおよび視覚的プライバシー保護センシングを可能にする。
環境条件やセンサーハードウェアの多様さにより、低モデル一般化はこの分野でよく知られた問題である。
画像ベース学習で一般的に使用されるデータ拡張技術は、Wi-Fi CSIに適用され、モデル一般化性能への影響を調べる。
論文 参考訳(メタデータ) (2024-01-01T22:27:59Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
合成スペクトルデータ生成分野におけるGANの応用について報告する。
CWGANは,低データ方式の性能向上を図り,サロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-07-14T16:27:24Z) - WiFi-TCN: Temporal Convolution for Human Interaction Recognition based
on WiFi signal [4.0773490083614075]
近年,Wi-Fiによる人間活動認識が注目されている。
Wi-FiベースのHARにまつわる課題は、シーンや被写体が変化するときのパフォーマンスが著しく低下することである。
本稿では,TN-AAと呼ばれる時間的畳み込みネットワークを利用した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:37:32Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - GAIA: A Transfer Learning System of Object Detection that Fits Your
Needs [136.60609274344893]
大規模データセットの事前学習によるトランスファーラーニングは,コンピュータビジョンや自然言語処理において,ますます重要な役割を担っている。
本稿では,物体検出の領域に着目し,GAIAと呼ばれる移動学習システムを提案する。
GAIAは、レイテンシ制約や指定されたデータドメインなどの下流要求に適合するモデルを選択する、強力な事前訓練されたウェイトを提供することができる。
論文 参考訳(メタデータ) (2021-06-21T18:24:20Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
本稿では、入力データの分布を近似し、この分布から新しいデータをサンプリングする新しい自動データ拡張モデルを提案する。
以上の結果から,拡張戦略は訓練が高速であり,ニューラルネットワークと最先端手法の両方の分類精度を向上させることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-05-27T11:07:09Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
限定サンプルに基づくHSI分類のためのエンドツーエンドの3次元軽量畳み込みニューラルネットワーク(CNN)を提案する。
従来の3D-CNNモデルと比較して,提案した3D-LWNetはネットワーク構造が深く,パラメータが小さく,計算コストも低い。
本モデルでは,HSI分類の競合性能を,いくつかの最先端手法と比較した。
論文 参考訳(メタデータ) (2020-12-07T03:44:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。