論文の概要: Computational Fluid Dynamics on Quantum Computers
- arxiv url: http://arxiv.org/abs/2406.18749v2
- Date: Tue, 2 Jul 2024 15:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 12:13:48.844724
- Title: Computational Fluid Dynamics on Quantum Computers
- Title(参考訳): 量子コンピュータにおける計算流体力学
- Authors: Madhava Syamlal, Carter Copen, Masashi Takahashi, Benjamin Hall,
- Abstract要約: Qubitは計算流体力学(CFD)のための量子解に取り組んでいる
我々は、変分量子CFD(VQCFD)アルゴリズムとそれに基づく2Dソフトウェアプロトタイプを作成しました。
量子シミュレータ上でSoftware Prototypeをテストすることにより、CFDの根底にある偏微分方程式を量子コンピュータで解くことができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: QubitSolve is working on a quantum solution for computational fluid dynamics (CFD). We have created a variational quantum CFD (VQCFD) algorithm and a 2D Software Prototype based on it. By testing the Software Prototype on a quantum simulator, we demonstrate that the partial differential equations that underlie CFD can be solved using quantum computers. We aim to determine whether a quantum advantage can be achieved with VQCFD. To do this, we compare the performance of VQCFD with classical CFD using performance models. The quantum performance model uses data from VQCFD circuits run on quantum computers. We define a key performance parameter Q_{5E7}, the ratio of quantum to classical simulation time for a size relevant to industrial simulations. Given the current state of the Software Prototype and the limited computing resources available, we can only estimate an upper bound for Q_{5E7}. While the estimated Q_{5E7} shows that the algorithm's implementation must improve significantly, we have identified several innovative techniques that could reduce it sufficiently to achieve a quantum advantage. In the next phase of development, we will develop a 3D minimum-viable product and implement those techniques.
- Abstract(参考訳): QubitSolveは計算流体力学(CFD)のための量子解に取り組んでいる。
我々は、変分量子CFD(VQCFD)アルゴリズムとそれに基づく2Dソフトウェアプロトタイプを作成しました。
量子シミュレータ上でSoftware Prototypeをテストすることにより、CFDの根底にある偏微分方程式を量子コンピュータで解くことができることを示す。
量子アドバンテージがVQCFDで達成できるかどうかを判断することを目的としている。
そこで本研究では,VQCFDの性能と従来のCFDの性能を性能モデルを用いて比較する。
量子性能モデルは、量子コンピュータ上で動作するVQCFD回路のデータを使用する。
産業シミュレーションに関係のあるサイズの量子と古典的シミュレーション時間の比率であるキーパフォーマンスパラメータ Q_{5E7} を定義する。
ソフトウェアプロトタイプの現在の状態と利用可能な限られた計算資源を考えると、我々はQ_{5E7}の上限を見積もることができる。
推定されたQ_{5E7} はアルゴリズムの実装が大幅に改善する必要があることを示しているが、量子的優位性を達成するのに十分削減できる革新的な技術がいくつか見出されている。
開発の次のフェーズでは、3Dの最小限の製品を開発し、それらの技術を実装します。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
変分量子アルゴリズムは、コスト関数を効率的に最適化するために重ね合わせと絡み合いの特徴を利用する。
我々は,IBM Qiskit プラットフォーム上で 5-qubit および 7-qubit 量子プロセッサ上での数値処理を実装し,実演する。
論文 参考訳(メタデータ) (2023-08-28T17:52:47Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Particle track reconstruction with noisy intermediate-scale quantum
computers [0.0]
荷電粒子の軌道の再構成は、現在および将来のコライダー実験における重要な計算課題である。
この問題は2次非制約バイナリ最適化(QUBO)として定式化することができ、変分量子固有解法(VQE)アルゴリズムを用いて解かれる。
この研究は、VQEが粒子追跡に使用できるという原理の証明となり、VQEの最適化にもっと適するように、VQEの修正を調査した。
論文 参考訳(メタデータ) (2023-03-23T13:29:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
本稿では,分散量子アルゴリズムの高性能実装を実現するために,MPI(Message Passing Interface)の拡張を提案する。
量子MPIの試作実装に加えて,分散量子コンピューティングの性能モデルであるSENDQを提案する。
論文 参考訳(メタデータ) (2021-05-03T18:30:43Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Fast-Forwarding with NISQ Processors without Feedback Loop [0.0]
量子シミュレーションのための代替対角化アルゴリズムとして古典量子高速フォワード法(CQFF)を提案する。
CQFFは古典的量子フィードバックループと制御されたマルチキュービットユニタリの必要性を取り除く。
私たちの仕事は、以前の記録よりも104ドルの改善を提供します。
論文 参考訳(メタデータ) (2021-04-05T14:29:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Intel Quantum Simulator: A cloud-ready high-performance simulator of
quantum circuits [0.0]
我々は、qHiPSTERとして知られていたIntel Quantum Simulator(IQS)の最新リリースを紹介する。
このソフトウェアの高性能コンピューティング能力により、ユーザーは利用可能なハードウェアリソースを活用できる。
IQSは計算資源を分割し、関連する回路のプールを並列にシミュレートする。
論文 参考訳(メタデータ) (2020-01-28T19:00:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。