A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation
- URL: http://arxiv.org/abs/2406.18797v1
- Date: Thu, 27 Jun 2024 00:06:23 GMT
- Title: A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation
- Authors: Honomi Kashihara, Yudai Suzuki, Kenji Yasuoka,
- Abstract summary: Ab-initio molecular dynamics (AIMD) is a powerful tool to simulate physical movements of molecules for investigating properties of materials.
Near-term quantum computers have attracted much attentions as a possible solution to alleviate the challenge.
We build on the proposed QCPMD method and introduce the classical shadow technique to further improve resource efficiency.
- Score: 0.24578723416255746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ab-initio molecular dynamics (AIMD) is a powerful tool to simulate physical movements of molecules for investigating properties of materials. While AIMD is successful in some applications, circumventing its high computational costs is imperative to perform large-scale and long-time simulations. In recent days, near-term quantum computers have attracted much attentions as a possible solution to alleviate the challenge. Specifically, Kuroiwa et al. proposed a new AIMD method called quantum Car-Parrinello molecular dynamics (QCPMD), which exploits the Car-Parrinello method and Langevin formulation to realize cost-efficient simulations at the equilibrium state, using near-term quantum devices. In this work, we build on the proposed QCPMD method and introduce the classical shadow technique to further improve resource efficiency of the simulations. More precisely, classical shadows are used to estimate the forces of all nuclei simultaneously, implying this approach is more effective as the number of molecules increases. We numerically study the performance of our scheme on the $\text{H}_2$ molecule and show that QCPMD with classical shadows can simulate the equilibrium state. Our results will give some insights into efficient AIMD simulations on currently-available quantum computers.
Related papers
- Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
A quantum neural network is used to learn the potential energy surface and force field of molecular systems.
This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer.
We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices.
Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms.
arXiv Detail & Related papers (2024-06-20T18:00:01Z) - Physics-informed active learning for accelerating quantum chemical simulations [10.56535364437456]
We introduce the end-to-end AL for constructing robust data-efficient potentials in quantum chemical simulations.
Our protocol is based on the physics-informed sampling of training points, automatic selection of initial data, uncertainty quantification, and convergence monitoring.
These investigations took us days instead of weeks of pure quantum chemical calculations on a high-performance computing cluster.
arXiv Detail & Related papers (2024-04-18T00:17:01Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Quantum Car-Parrinello Molecular Dynamics: A Cost-Efficient Molecular
Simulation Method on Near-Term Quantum Computers [0.0]
We propose a cost-reduced method for finite-temperature molecular dynamics on a near-term quantum computer, Quantum Car-Parrinello molecular dynamics (QCPMD)
Our method achieves a substantial cost reduction compared with molecular dynamics using the variational quantum eigensolver (VQE)
arXiv Detail & Related papers (2022-12-22T17:59:31Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
We introduce an optimized implementation of the hybrid method (NNP/MM), which combines neural network potentials (NNP) and molecular mechanics (MM)
This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency.
It has enabled us to increase the simulation speed by 5 times and achieve a combined sampling of one microsecond for each complex, marking the longest simulations ever reported for this class of simulation.
arXiv Detail & Related papers (2022-01-20T10:57:20Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) is a powerful tool to predict properties of molecular and condensed matter systems.
We provide solutions for the alleviation of the statistical noise associated to the measurements of the expectation values of energies and forces.
We also propose a Langevin dynamics algorithm for the simulation of canonical, i.e., constant temperature, dynamics.
arXiv Detail & Related papers (2020-08-18T20:24:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.