NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic
- URL: http://arxiv.org/abs/2201.08110v2
- Date: Mon, 28 Aug 2023 12:04:46 GMT
- Title: NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic
- Authors: Raimondas Galvelis, Alejandro Varela-Rial, Stefan Doerr, Roberto Fino,
Peter Eastman, Thomas E. Markland, John D. Chodera and Gianni De Fabritiis
- Abstract summary: We introduce an optimized implementation of the hybrid method (NNP/MM), which combines neural network potentials (NNP) and molecular mechanics (MM)
This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency.
It has enabled us to increase the simulation speed by 5 times and achieve a combined sampling of one microsecond for each complex, marking the longest simulations ever reported for this class of simulation.
- Score: 38.50309739333058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning potentials have emerged as a means to enhance the accuracy
of biomolecular simulations. However, their application is constrained by the
significant computational cost arising from the vast number of parameters
compared to traditional molecular mechanics. To tackle this issue, we introduce
an optimized implementation of the hybrid method (NNP/MM), which combines
neural network potentials (NNP) and molecular mechanics (MM). This approach
models a portion of the system, such as a small molecule, using NNP while
employing MM for the remaining system to boost efficiency. By conducting
molecular dynamics (MD) simulations on various protein-ligand complexes and
metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our
implementation of NNP/MM. It has enabled us to increase the simulation speed by
5 times and achieve a combined sampling of one microsecond for each complex,
marking the longest simulations ever reported for this class of simulation.
Related papers
- A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation [0.24578723416255746]
Ab-initio molecular dynamics (AIMD) is a powerful tool to simulate physical movements of molecules for investigating properties of materials.
Near-term quantum computers have attracted much attentions as a possible solution to alleviate the challenge.
We build on the proposed QCPMD method and introduce the classical shadow technique to further improve resource efficiency.
arXiv Detail & Related papers (2024-06-27T00:06:23Z) - Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy [1.7633275579210346]
We develop an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential.
We apply this method to study the isomerization of an ultrasmall silver nanocluster, belonging to a set of systems with diverse applications in the fields of medicine and biology.
arXiv Detail & Related papers (2024-01-29T19:01:31Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Accelerated Simulations of Molecular Systems through Learning of their
Effective Dynamics [4.276697874428501]
We present a novel framework to advance simulation by up to three orders of magnitude.
LED learns the effective dynamics of molecular systems.
We demonstrate the effectiveness of LED in the M"ueller-Brown potential, the Trp Cage protein, and the alanine dipeptide.
arXiv Detail & Related papers (2021-02-17T15:15:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.