Length Optimization in Conformal Prediction
- URL: http://arxiv.org/abs/2406.18814v1
- Date: Thu, 27 Jun 2024 01:08:04 GMT
- Title: Length Optimization in Conformal Prediction
- Authors: Shayan Kiyani, George Pappas, Hamed Hassani,
- Abstract summary: We develop Conformal Prediction with Length-Optimization (CPL) as a principled framework for conformal prediction.
CPL constructs prediction sets with (near-) optimal length while ensuring conditional validity.
Our empirical evaluations demonstrate the superior prediction set size performance of CPL compared to state-of-the-art methods.
- Score: 22.733758606168873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conditional validity and length efficiency are two crucial aspects of conformal prediction (CP). Achieving conditional validity ensures accurate uncertainty quantification for data subpopulations, while proper length efficiency ensures that the prediction sets remain informative and non-trivial. Despite significant efforts to address each of these issues individually, a principled framework that reconciles these two objectives has been missing in the CP literature. In this paper, we develop Conformal Prediction with Length-Optimization (CPL) - a novel framework that constructs prediction sets with (near-) optimal length while ensuring conditional validity under various classes of covariate shifts, including the key cases of marginal and group-conditional coverage. In the infinite sample regime, we provide strong duality results which indicate that CPL achieves conditional validity and length optimality. In the finite sample regime, we show that CPL constructs conditionally valid prediction sets. Our extensive empirical evaluations demonstrate the superior prediction set size performance of CPL compared to state-of-the-art methods across diverse real-world and synthetic datasets in classification, regression, and text-related settings.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformal Prediction with Learned Features [22.733758606168873]
We propose Partition Learning Conformal Prediction (PLCP) to improve conditional validity of prediction sets.
We implement PLCP efficiently with gradient alternating descent, utilizing off-the-shelf machine learning models.
Our experimental results over four real-world and synthetic datasets show the superior performance of PLCP.
arXiv Detail & Related papers (2024-04-26T15:43:06Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - PAC-Bayes Generalization Certificates for Learned Inductive Conformal
Prediction [27.434939269672288]
We use PAC-Bayes theory to obtain generalization bounds on the coverage and the efficiency of set-valued predictors.
We leverage these theoretical results to provide a practical algorithm for using calibration data to fine-tune the parameters of a model and score function.
We evaluate the approach on regression and classification tasks, and outperform baselines calibrated using a Hoeffding bound-based PAC guarantee on ICP.
arXiv Detail & Related papers (2023-12-07T19:40:44Z) - Practical Adversarial Multivalid Conformal Prediction [27.179891682629183]
We give a generic conformal prediction method for sequential prediction.
It achieves target empirical coverage guarantees against adversarially chosen data.
It is computationally lightweight -- comparable to split conformal prediction.
arXiv Detail & Related papers (2022-06-02T14:33:00Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
We study episodic two-player zero-sum Markov games (MGs) in the offline setting.
The goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori.
arXiv Detail & Related papers (2022-02-15T15:39:30Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Approximation to Object Conditional Validity with Conformal Predictors [0.2538209532048866]
Conformal predictors are machine learning algorithms that output prediction intervals that have a guarantee of marginal validity for finite samples.
It has been shown that such conditional validity is impossible to guarantee for non-trivial prediction problems for finite samples.
In this article, instead of trying to achieve a strong conditional validity result, the weaker goal of achieving an approximation to conditional validity is considered.
arXiv Detail & Related papers (2021-02-15T10:14:44Z) - Efficient Conformal Prediction via Cascaded Inference with Expanded
Admission [43.596058175459746]
We present a novel approach for conformal prediction (CP)
We aim to identify a set of promising prediction candidates -- in place of a single prediction.
This set is guaranteed to contain a correct answer with high probability.
arXiv Detail & Related papers (2020-07-06T23:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.