Statistical Inference for Temporal Difference Learning with Linear Function Approximation
- URL: http://arxiv.org/abs/2410.16106v1
- Date: Mon, 21 Oct 2024 15:34:44 GMT
- Title: Statistical Inference for Temporal Difference Learning with Linear Function Approximation
- Authors: Weichen Wu, Gen Li, Yuting Wei, Alessandro Rinaldo,
- Abstract summary: Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
- Score: 62.69448336714418
- License:
- Abstract: Statistical inference with finite-sample validity for the value function of a given policy in Markov decision processes (MDPs) is crucial for ensuring the reliability of reinforcement learning. Temporal Difference (TD) learning, arguably the most widely used algorithm for policy evaluation, serves as a natural framework for this purpose.In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results. First, we derive a novel sharp high-dimensional probability convergence guarantee that depends explicitly on the asymptotic variance and holds under weak conditions. We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature. Finally, we propose a plug-in estimator for the asymptotic covariance matrix, designed for efficient online computation. These results enable the construction of confidence regions and simultaneous confidence intervals for the linear parameters of the value function, with guaranteed finite-sample coverage. We demonstrate the applicability of our theoretical findings through numerical experiments.
Related papers
- High Confidence Level Inference is Almost Free using Parallel Stochastic
Optimization [16.38026811561888]
This paper introduces a novel inference method focused on constructing confidence intervals with efficient computation and fast convergence to the nominal level.
Our method requires minimal additional computation and memory beyond the standard updating of estimates, making the inference process almost cost-free.
arXiv Detail & Related papers (2024-01-17T17:11:45Z) - Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability [17.771354881467435]
We show that a simple algorithm with a universal and instance-independent step size is sufficient to obtain near-optimal variance and bias terms.
Our proof technique is based on refined error bounds for linear approximation together with the novel stability result for the product of random matrices.
arXiv Detail & Related papers (2023-10-22T12:37:25Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
We develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach.
It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property.
arXiv Detail & Related papers (2023-05-23T19:57:57Z) - Online Statistical Inference for Nonlinear Stochastic Approximation with
Markovian Data [22.59079286063505]
We study the statistical inference of nonlinear approximation algorithms utilizing a single trajectory of Markovian data.
Our methodology has practical applications in various scenarios, such as Gradient Descent (SGD) on autoregressive data and asynchronous Q-Learning.
arXiv Detail & Related papers (2023-02-15T14:31:11Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.