Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis
- URL: http://arxiv.org/abs/2406.18817v1
- Date: Thu, 27 Jun 2024 01:16:44 GMT
- Title: Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis
- Authors: Mingyang Zhao, Jingen Jiang, Lei Ma, Shiqing Xin, Gaofeng Meng, Dong-Ming Yan,
- Abstract summary: We present a novel non-rigid point set registration method inspired by unsupervised clustering analysis.
Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin.
- Score: 28.18800845199871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel non-rigid point set registration method that is inspired by unsupervised clustering analysis. Unlike previous approaches that treat the source and target point sets as separate entities, we develop a holistic framework where they are formulated as clustering centroids and clustering members, separately. We then adopt Tikhonov regularization with an $\ell_1$-induced Laplacian kernel instead of the commonly used Gaussian kernel to ensure smooth and more robust displacement fields. Our formulation delivers closed-form solutions, theoretical guarantees, independence from dimensions, and the ability to handle large deformations. Subsequently, we introduce a clustering-improved Nystr\"om method to effectively reduce the computational complexity and storage of the Gram matrix to linear, while providing a rigorous bound for the low-rank approximation. Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin, particularly on shapes with substantial deformations. Additionally, we demonstrate the versatility of our method in challenging tasks such as shape transfer and medical registration.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - Variable Clustering via Distributionally Robust Nodewise Regression [7.289979396903827]
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression.
We derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation.
arXiv Detail & Related papers (2022-12-15T16:23:25Z) - Bregman Power k-Means for Clustering Exponential Family Data [11.434503492579477]
We bridge algorithmic advances to classical work on hard clustering under Bregman divergences.
The elegant properties of Bregman divergences allow us to maintain closed form updates in a simple and transparent algorithm.
We consider thorough empirical analyses on simulated experiments and a case study on rainfall data, finding that the proposed method outperforms existing peer methods in a variety of non-Gaussian data settings.
arXiv Detail & Related papers (2022-06-22T06:09:54Z) - A Deep-Discrete Learning Framework for Spherical Surface Registration [4.7633236054762875]
Cortical surface registration is a fundamental tool for neuroimaging analysis.
We propose a novel unsupervised learning-based framework that converts registration to a multi-label classification problem.
Experiments show that our proposed framework performs competitively, in terms of similarity and areal distortion, relative to the most popular classical surface registration algorithms.
arXiv Detail & Related papers (2022-03-24T11:47:11Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
Constrained clustering can leverage prior information on a growing amount of only partially labeled data.
We propose a novel framework for constrained clustering that is intuitive, interpretable, and can be trained efficiently in the framework of gradient variational inference.
arXiv Detail & Related papers (2021-06-11T13:38:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Kernel k-Means, By All Means: Algorithms and Strong Consistency [21.013169939337583]
Kernel $k$ clustering is a powerful tool for unsupervised learning of non-linear data.
In this paper, we generalize results leveraging a general family of means to combat sub-optimal local solutions.
Our algorithm makes use of majorization-minimization (MM) to better solve this non-linear separation problem.
arXiv Detail & Related papers (2020-11-12T16:07:18Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function.
We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case.
arXiv Detail & Related papers (2020-07-13T17:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.