論文の概要: Disentangling Knowledge-based and Visual Reasoning by Question Decomposition in KB-VQA
- arxiv url: http://arxiv.org/abs/2406.18839v1
- Date: Thu, 27 Jun 2024 02:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 15:27:31.075710
- Title: Disentangling Knowledge-based and Visual Reasoning by Question Decomposition in KB-VQA
- Title(参考訳): KB-VQAにおける質問分解による知識ベースと視覚的推論の分離
- Authors: Elham J. Barezi, Parisa Kordjamshidi,
- Abstract要約: 本稿では,知識に基づく視覚的問合せ問題について検討し,その解を求めるためには,モデルが視覚的モダリティに根ざす必要があることを示した。
我々の研究は、複雑な質問をいくつかの単純な質問に置き換えることで、画像からより関連性の高い情報を抽出できることを示した。
- 参考スコア(独自算出の注目度): 19.6585442152102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the Knowledge-Based visual question-answering problem, for which given a question, the models need to ground it into the visual modality to find the answer. Although many recent works use question-dependent captioners to verbalize the given image and use Large Language Models to solve the VQA problem, the research results show they are not reasonably performing for multi-hop questions. Our study shows that replacing a complex question with several simpler questions helps to extract more relevant information from the image and provide a stronger comprehension of it. Moreover, we analyze the decomposed questions to find out the modality of the information that is required to answer them and use a captioner for the visual questions and LLMs as a general knowledge source for the non-visual KB-based questions. Our results demonstrate the positive impact of using simple questions before retrieving visual or non-visual information. We have provided results and analysis on three well-known VQA datasets including OKVQA, A-OKVQA, and KRVQA, and achieved up to 2% improvement in accuracy.
- Abstract(参考訳): 本稿では,知識に基づく視覚的問合せ問題について検討し,その解を求めるためには,モデルが視覚的モダリティに根ざす必要があることを示した。
近年の多くの研究は、与えられた画像の言語化に質問依存キャプタを使用し、VQA問題を解決するために大規模言語モデルを使用しているが、研究結果は、マルチホップの質問に対して合理的に実行されていないことを示している。
我々の研究は、複雑な質問をより単純な質問に置き換えることで、画像からより関連性の高い情報を抽出し、より強力な理解を提供する。
さらに,分解された質問を分析し,回答に必要な情報のモダリティを把握し,視覚的質問に対するキャプタとLLMを,非視覚的KBベースの質問に対する一般的な知識源として利用する。
その結果,視覚的情報や非視覚的情報を取得する前に,単純な質問を用いた場合の肯定的な影響が示された。
我々は、OKVQA、A-OKVQA、KRVQAを含む3つの有名なVQAデータセットについて結果と分析を行い、最大2%の精度向上を実現した。
関連論文リスト
- Precision Empowers, Excess Distracts: Visual Question Answering With Dynamically Infused Knowledge In Language Models [36.56689822791777]
KBVQA (Knowledge-Based Visual Question Answering) は、外部知識と質問に答える画像を追加することで、この概念を前進させる。
本研究の主な貢献は、動的トリプル抽出法を用いて知識グラフから抽出した外部知識を組み込むことにより、質問を強化することである。
知識に富んだ我々のモデルは,3種類のKBVQAデータセット上での最先端技術よりも,Exact Match Scoreの平均4.75%向上を示す。
論文 参考訳(メタデータ) (2024-06-14T13:07:46Z) - CommVQA: Situating Visual Question Answering in Communicative Contexts [16.180130883242672]
画像、画像記述、実世界のコミュニケーションシナリオからなるデータセットであるCommVQAを紹介する。
CommVQAの解決には文脈情報へのアクセスが不可欠であることを示す。
論文 参考訳(メタデータ) (2024-02-22T22:31:39Z) - Language Guided Visual Question Answering: Elevate Your Multimodal
Language Model Using Knowledge-Enriched Prompts [54.072432123447854]
視覚的質問応答(VQA)は、画像に関する質問に答えるタスクである。
疑問に答えるには、常識知識、世界知識、イメージに存在しないアイデアや概念についての推論が必要である。
本稿では,論理文や画像キャプション,シーングラフなどの形式で言語指導(LG)を用いて,より正確に質問に答えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:54:11Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
知識に基づく視覚的質問回答(KB-VQA)の目的は、外部知識ベースの助けを借りて質問に対する正しい回答を提供することである。
KB-VQA, Graph pATH ranker (GATHER for brevity) の新しいレトリバーランカパラダイムを提案する。
具体的には、グラフの構築、プルーニング、パスレベルのランク付けが含まれており、正確な回答を検索するだけでなく、推論パスを提供して推論プロセスを説明する。
論文 参考訳(メタデータ) (2023-10-12T09:12:50Z) - Can Pre-trained Vision and Language Models Answer Visual
Information-Seeking Questions? [50.29862466940209]
情報検索に適した視覚的質問応答データセットであるInfoSeekを紹介する。
事前学習した様々な視覚的質問応答モデルを分析し,その特徴について考察する。
関連文書を検索することでInfoSeekの性能を向上させるために,正確な視覚的実体認識が利用できることを示す。
論文 参考訳(メタデータ) (2023-02-23T00:33:54Z) - A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge [39.788346536244504]
A-OKVQAは、約25万の質問からなるクラウドソーシングデータセットである。
我々は、この新たなデータセットの可能性について、その内容の詳細な分析を通して示す。
論文 参考訳(メタデータ) (2022-06-03T17:52:27Z) - REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual
Question Answering [75.53187719777812]
本稿では,知識に基づく視覚的質問応答(VQA)における視覚表現を再考する。
本稿では,対象領域の明示的な情報を活用するための知識に基づく新しいVQA手法REVIVEを提案する。
我々は,新しい最先端性能,すなわち58.0%の精度を実現し,従来の最先端手法を大きなマージンで上回った。
論文 参考訳(メタデータ) (2022-06-02T17:59:56Z) - Knowledge-Routed Visual Question Reasoning: Challenges for Deep
Representation Embedding [140.5911760063681]
VQAモデル評価のためのナレッジルーティング視覚質問推論という新しいデータセットを提案する。
視覚ゲノムシーングラフと外部知識ベースの両方に基づいて,制御プログラムを用いて質問応答対を生成する。
論文 参考訳(メタデータ) (2020-12-14T00:33:44Z) - Understanding Knowledge Gaps in Visual Question Answering: Implications
for Gap Identification and Testing [20.117014315684287]
我々は、知識ギャップ(KG)の分類を用いて、質問を1つまたは複数のタイプのKGでタグ付けする。
次に,各KGに対する質問の分布のスキューについて検討する。
これらの新しい質問は、既存のVQAデータセットに追加することで、質問の多様性を高め、スキューを減らすことができる。
論文 参考訳(メタデータ) (2020-04-08T00:27:43Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
現状のVQAモデルでは、知覚や推論の問題に答える上で同等の性能を持つが、一貫性の問題に悩まされていることを示す。
この欠点に対処するため、サブクエスト対応ネットワークチューニング(SQuINT)というアプローチを提案する。
我々は,SQuINTがモデル一貫性を5%向上し,VQAにおける推論問題の性能も改善し,注意マップも改善したことを示す。
論文 参考訳(メタデータ) (2020-01-20T01:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。