LICO: Large Language Models for In-Context Molecular Optimization
- URL: http://arxiv.org/abs/2406.18851v1
- Date: Thu, 27 Jun 2024 02:43:18 GMT
- Title: LICO: Large Language Models for In-Context Molecular Optimization
- Authors: Tung Nguyen, Aditya Grover,
- Abstract summary: We introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization.
We train the model to perform in-context predictions on a diverse set of functions defined over the domain.
Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting.
- Score: 33.5918976228562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing black-box functions is a fundamental problem in science and engineering. To solve this problem, many approaches learn a surrogate function that estimates the underlying objective from limited historical evaluations. Large Language Models (LLMs), with their strong pattern-matching capabilities via pretraining on vast amounts of data, stand out as a potential candidate for surrogate modeling. However, directly prompting a pretrained language model to produce predictions is not feasible in many scientific domains due to the scarcity of domain-specific data in the pretraining corpora and the challenges of articulating complex problems in natural language. In this work, we introduce LICO, a general-purpose model that extends arbitrary base LLMs for black-box optimization, with a particular application to the molecular domain. To achieve this, we equip the language model with a separate embedding layer and prediction layer, and train the model to perform in-context predictions on a diverse set of functions defined over the domain. Once trained, LICO can generalize to unseen molecule properties simply via in-context prompting. LICO achieves state-of-the-art performance on PMO, a challenging molecular optimization benchmark comprising over 20 objective functions.
Related papers
- IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)
The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.
Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
arXiv Detail & Related papers (2024-08-23T08:10:13Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - ALMol: Aligned Language-Molecule Translation LLMs through Offline Preference Contrastive Optimisation [2.296475290901356]
We focus on machine language-molecule translation and deploy a novel training approach called contrastive preference optimisation.
Our results demonstrate that our models achieve up to a 32% improvement compared to counterpart models.
arXiv Detail & Related papers (2024-05-14T13:59:24Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - QAGAN: Adversarial Approach To Learning Domain Invariant Language
Features [0.76146285961466]
We explore adversarial training approach towards learning domain-invariant features.
We are able to achieve $15.2%$ improvement in EM score and $5.6%$ boost in F1 score on out-of-domain validation dataset.
arXiv Detail & Related papers (2022-06-24T17:42:18Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
We propose a simple, easy to interpret, and computationally lightweight perturbation mechanism to be applied to an already trained model at the decoding stage.
Our perturbation mechanism is model-agnostic and can be used in conjunction with any Large Language Model.
arXiv Detail & Related papers (2022-05-26T20:50:58Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
We propose Representation Reprogramming via Dictionary Learning (R2DL) for adversarially reprogramming pretrained language models for molecular learning tasks.
The adversarial program learns a linear transformation between a dense source model input space (language data) and a sparse target model input space (e.g., chemical and biological molecule data) using a k-SVD solver.
R2DL achieves the baseline established by state of the art toxicity prediction models trained on domain-specific data and outperforms the baseline in a limited training-data setting.
arXiv Detail & Related papers (2020-12-07T05:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.