Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods
- URL: http://arxiv.org/abs/2406.18861v2
- Date: Fri, 5 Jul 2024 03:03:45 GMT
- Title: Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods
- Authors: Artur Grigorev, Sajjad Shafiei, Hanna Grzybowska, Adriana-Simona Mihaita,
- Abstract summary: This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term.
We train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost.
XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold.
- Score: 3.3373764108905446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84% short-term duration classification accuracy and 62.72% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Predicting Overtakes in Trucks Using CAN Data [51.28632782308621]
We investigate the detection of truck overtakes from CAN data.
Our analysis covers up to 10 seconds before the overtaking event.
We observe that the prediction scores of the overtake class tend to increase as we approach the overtake trigger.
arXiv Detail & Related papers (2024-04-08T17:58:22Z) - A Bi-level Framework for Traffic Accident Duration Prediction:
Leveraging Weather and Road Condition Data within a Practical Optimum
Pipeline [0.5221459608786241]
We gathered accident duration, road conditions, and meteorological data from a database of traffic accidents to check the feasibility of a traffic accident duration pipeline.
Our binary classification random forest model distinguished between short-term and long-term effects with an 83% accuracy rate.
The SHAP value analysis identified weather conditions, wind chill and wind speed as the most influential factors in determining the duration of an accident.
arXiv Detail & Related papers (2023-11-01T16:33:37Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Driver Maneuver Detection and Analysis using Time Series Segmentation
and Classification [7.413735713939367]
This paper implements a methodology for automatically detecting vehicle maneuvers from vehicle telemetry data under naturalistic driving settings.
Our objective is to develop an end-to-end pipeline for frame-by-frame annotation of naturalistic driving studies videos.
arXiv Detail & Related papers (2022-11-10T03:38:50Z) - Traffic incident duration prediction via a deep learning framework for
text description encoding [9.424574945499842]
This paper proposes a new fusion framework for predicting the incident duration from limited information.
The application area is the city of San Francisco, rich in both traffic incident logs and past historical traffic congestion information.
arXiv Detail & Related papers (2022-09-19T03:16:13Z) - Incident duration prediction using a bi-level machine learning framework
with outlier removal and intra-extra joint optimisation [6.291975267775799]
This paper presents a novel bi-level machine learning framework enhanced with outlier removal and intra-extra joint optimisation.
We use incident data logs to develop a binary classification prediction approach, which allows us to classify traffic incidents as short-term or long-term.
We find the optimal threshold between short-term versus long-term traffic incident duration, targeting both class balance and prediction performance.
arXiv Detail & Related papers (2022-05-10T22:40:05Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - Deep Learning and Statistical Models for Time-Critical Pedestrian
Behaviour Prediction [5.593571255686115]
We show that, though the neural network model achieves an accuracy of 80%, it requires long sequences to achieve this (100 samples or more)
The SLDS, has a lower accuracy of 74%, but it achieves this result with short sequences (10 samples)
The results provide a key intuition of the suitability of the models in time-critical problems.
arXiv Detail & Related papers (2020-02-26T00:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.