Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features
- URL: http://arxiv.org/abs/2309.12140v1
- Date: Thu, 21 Sep 2023 15:00:31 GMT
- Title: Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features
- Authors: Travis Zhang, Katie Luo, Cheng Perng Phoo, Yurong You, Wei-Lun Chao,
Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger
- Abstract summary: We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
- Score: 69.47588461101925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of 3D object detection systems for self-driving cars
has significantly improved accuracy. However, these systems struggle to
generalize across diverse driving environments, which can lead to
safety-critical failures in detecting traffic participants. To address this, we
propose a method that utilizes unlabeled repeated traversals of multiple
locations to adapt object detectors to new driving environments. By
incorporating statistics computed from repeated LiDAR scans, we guide the
adaptation process effectively. Our approach enhances LiDAR-based detection
models using spatial quantized historical features and introduces a lightweight
regression head to leverage the statistics for feature regularization.
Additionally, we leverage the statistics for a novel self-training process to
stabilize the training. The framework is detector model-agnostic and
experiments on real-world datasets demonstrate significant improvements,
achieving up to a 20-point performance gain, especially in detecting
pedestrians and distant objects. Code is available at
https://github.com/zhangtravis/Hist-DA.
Related papers
- Learning 3D Perception from Others' Predictions [64.09115694891679]
We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector.
For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area.
arXiv Detail & Related papers (2024-10-03T16:31:28Z) - Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps [8.897884780881535]
LiDAR-based 3D object detectors often fail to adapt well to target domains with different sensor configurations.
Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames.
We propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data.
arXiv Detail & Related papers (2024-10-02T08:22:42Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - FAST3D: Flow-Aware Self-Training for 3D Object Detectors [12.511087244102036]
State-of-the-art self-training approaches mostly ignore the temporal nature of autonomous driving data.
We propose a flow-aware self-training method that enables unsupervised domain adaptation for 3D object detectors on continuous LiDAR point clouds.
Our results show a significant improvement over the state-of-the-art, without any prior target domain knowledge.
arXiv Detail & Related papers (2021-10-18T14:32:05Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.