Autoencoder based approach for the mitigation of spurious correlations
- URL: http://arxiv.org/abs/2406.18901v1
- Date: Thu, 27 Jun 2024 05:28:44 GMT
- Title: Autoencoder based approach for the mitigation of spurious correlations
- Authors: Srinitish Srinivasan, Karthik Seemakurthy,
- Abstract summary: Spurious correlations refer to erroneous associations in data that do not reflect true underlying relationships.
These correlations can lead deep neural networks (DNNs) to learn patterns that are not robust across diverse datasets or real-world scenarios.
We propose an autoencoder-based approach to analyze the nature of spurious correlations that exist in the Global Wheat Head Detection (GWHD) 2021 dataset.
- Score: 2.7624021966289605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have exhibited remarkable performance across various tasks, yet their susceptibility to spurious correlations poses a significant challenge for out-of-distribution (OOD) generalization. Spurious correlations refer to erroneous associations in data that do not reflect true underlying relationships but are instead artifacts of dataset characteristics or biases. These correlations can lead DNNs to learn patterns that are not robust across diverse datasets or real-world scenarios, hampering their ability to generalize beyond training data. In this paper, we propose an autoencoder-based approach to analyze the nature of spurious correlations that exist in the Global Wheat Head Detection (GWHD) 2021 dataset. We then use inpainting followed by Weighted Boxes Fusion (WBF) to achieve a 2% increase in the Average Domain Accuracy (ADA) over the YOLOv5 baseline and consistently show that our approach has the ability to suppress some of the spurious correlations in the GWHD 2021 dataset. The key advantage of our approach is that it is more suitable in scenarios where there is limited scope to adapt or fine-tune the trained model in unseen test environments.
Related papers
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
In open-world scenarios, global models may struggle to predict well on entirely new domain data captured by certain media.
Existing methods still rely on strong statistical correlations between samples and labels to address this issue.
We introduce FedCD, an overall optimization framework at both the local and global levels.
arXiv Detail & Related papers (2024-07-27T05:06:31Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex.
We show that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold.
We propose to improve the optimization of GANs with score matching regularity (SMaRt)
arXiv Detail & Related papers (2023-11-30T03:05:14Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - FedGen: Generalizable Federated Learning for Sequential Data [8.784435748969806]
In many real-world distributed settings, spurious correlations exist due to biases and data sampling issues.
We present a generalizable federated learning framework called FedGen, which allows clients to identify and distinguish between spurious and invariant features.
We show that FedGen results in models that achieve significantly better generalization and can outperform the accuracy of current federated learning approaches by over 24%.
arXiv Detail & Related papers (2022-11-03T15:48:14Z) - On the Limitations of Dataset Balancing: The Lost Battle Against
Spurious Correlations [17.709208772225512]
Deep learning models are sensitive to low-level correlations between simple features and specific output labels.
To mitigate this problem, a common practice is to balance datasets by adding new instances or by filtering out "easy" instances.
But even balancing all single-word features is insufficient for mitigating all of these correlations.
arXiv Detail & Related papers (2022-04-27T05:42:40Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.