論文の概要: RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation
- arxiv url: http://arxiv.org/abs/2406.18927v1
- Date: Thu, 27 Jun 2024 06:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:57:01.190130
- Title: RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation
- Title(参考訳): RoFIR:光中心の偏光に迫るロバストな魚眼画像再現フレームワーク
- Authors: Zhaokang Liao, Hao Feng, Shaokai Liu, Wengang Zhou, Houqiang Li,
- Abstract要約: 局所歪みの度合いと方向を測定する歪みベクトルマップ(DVM)を提案する。
DVMを学習することで、大域的な歪みパターンに頼ることなく、各ピクセルの局所歪みを独立に識別することができる。
事前学習段階では、歪みベクトルマップを予測し、各画素の局所歪み特徴を知覚する。
微調整段階では、魚眼画像修正のための画素単位のフローマップを予測する。
- 参考スコア(独自算出の注目度): 88.54817424560056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fisheye images are categorized fisheye into central and deviated based on the optical center position. Existing rectification methods are limited to central fisheye images, while this paper proposes a novel method that extends to deviated fisheye image rectification. The challenge lies in the variant global distortion distribution pattern caused by the random optical center position. To address this challenge, we propose a distortion vector map (DVM) that measures the degree and direction of local distortion. By learning the DVM, the model can independently identify local distortions at each pixel without relying on global distortion patterns. The model adopts a pre-training and fine-tuning training paradigm. In the pre-training stage, it predicts the distortion vector map and perceives the local distortion features of each pixel. In the fine-tuning stage, it predicts a pixel-wise flow map for deviated fisheye image rectification. We also propose a data augmentation method mixing central, deviated, and distorted-free images. Such data augmentation promotes the model performance in rectifying both central and deviated fisheye images, compared with models trained on single-type fisheye images. Extensive experiments demonstrate the effectiveness and superiority of the proposed method.
- Abstract(参考訳): 魚眼画像は、光学的中心位置に基づいて、魚眼を中央に分類し、逸脱させる。
既存の修正方法は中央魚眼画像に限られるが,本論文では魚眼画像のずれを解消する新しい方法を提案する。
この課題は、ランダムな光中心位置によって引き起こされる変動的大域歪み分布パターンにある。
この課題に対処するために,局所歪みの度合いと方向を測定する歪みベクトルマップ(DVM)を提案する。
DVMを学習することで、大域的な歪みパターンに頼ることなく、各ピクセルの局所歪みを独立に識別することができる。
このモデルは事前トレーニングと微調整のトレーニングパラダイムを採用している。
事前学習段階では、歪みベクトルマップを予測し、各画素の局所歪み特徴を知覚する。
微調整段階では、魚眼画像修正のための画素単位のフローマップを予測する。
また、中心、偏差、歪みのない画像を混合するデータ拡張手法を提案する。
このようなデータ拡張は、単一タイプの魚眼画像で訓練されたモデルと比較して、中央および脱落した魚眼画像の修正におけるモデル性能を促進する。
実験により提案手法の有効性と優位性を実証した。
関連論文リスト
- SimFIR: A Simple Framework for Fisheye Image Rectification with
Self-supervised Representation Learning [105.01294305972037]
自己教師型表現学習に基づく魚眼画像修正のためのフレームワークであるSimFIRを紹介する。
まず魚眼画像を複数のパッチに分割し,その表現を視覚変換器で抽出する。
下流修正作業における転送性能が著しく向上し、学習された表現の有効性が検証される。
論文 参考訳(メタデータ) (2023-08-17T15:20:17Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
我々はRecRecNet(Rectangling Rectification Network)という新しい学習モデルを提案する。
我々のモデルは、ソース構造をターゲット領域に柔軟にワープし、エンドツーエンドの非教師なし変形を実現する。
実験により, 定量評価と定性評価の両面において, 比較法よりも解法の方が優れていることが示された。
論文 参考訳(メタデータ) (2023-01-04T15:12:57Z) - FishFormer: Annulus Slicing-based Transformer for Fisheye Rectification
with Efficacy Domain Exploration [44.332845280150785]
そこで本研究では,魚眼画像をシーケンスとして処理し,世界的および地域的知覚を高めるためのフィッシュフォーマーについて紹介する。
魚眼画像の構造特性に応じてトランスフォーマーをチューニングした。
本手法は最先端の手法と比較して優れた性能を提供する。
論文 参考訳(メタデータ) (2022-07-05T09:59:32Z) - FisheyeEX: Polar Outpainting for Extending the FoV of Fisheye Lens [84.12722334460022]
魚眼レンズは、広視野(FoV)のため、計算写真や運転支援における応用が増大する
本稿では,魚眼レンズのFoVを拡張した魚眼EX法を提案する。
以上の結果から,本手法は従来の魚眼画像よりも27%多く,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-06-12T21:38:50Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
より高精度なパラメータを効率良く得る新しい歪み補正手法を提案する。
本研究では, 局所言語関連推定ネットワークを設計し, 順序歪みを学習し, 現実的な歪み分布を近似する。
歪み情報の冗長性を考慮すると,本手法では歪み画像の一部のみを用いて順序方向の歪み推定を行う。
論文 参考訳(メタデータ) (2020-07-21T10:03:42Z) - UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models [8.484676769284578]
本研究では,未修正単眼ビデオから深度,ユークリッド距離,および視覚計測を推定するための,汎用的な規模対応型自己教師パイプラインを提案する。
提案アルゴリズムは,KITTI修正データセットでさらに評価され,最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-07-13T20:35:05Z) - Fisheye Distortion Rectification from Deep Straight Lines [34.61402494687801]
本稿では,魚眼の歪み補正問題に対処するため,新しいラインアウェア整流ネットワーク(LaRecNet)を提案する。
本モデルでは,幾何的精度と画質の両面から最先端の性能を実現する。
特に、LaRecNetによって修正された画像は、基幹よりも高いピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)を達成する。
論文 参考訳(メタデータ) (2020-03-25T13:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。