RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation
- URL: http://arxiv.org/abs/2406.18927v1
- Date: Thu, 27 Jun 2024 06:38:56 GMT
- Title: RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation
- Authors: Zhaokang Liao, Hao Feng, Shaokai Liu, Wengang Zhou, Houqiang Li,
- Abstract summary: We propose a distortion vector map (DVM) that measures the degree and direction of local distortion.
By learning the DVM, the model can independently identify local distortions at each pixel without relying on global distortion patterns.
In the pre-training stage, it predicts the distortion vector map and perceives the local distortion features of each pixel.
In the fine-tuning stage, it predicts a pixel-wise flow map for deviated fisheye image rectification.
- Score: 88.54817424560056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fisheye images are categorized fisheye into central and deviated based on the optical center position. Existing rectification methods are limited to central fisheye images, while this paper proposes a novel method that extends to deviated fisheye image rectification. The challenge lies in the variant global distortion distribution pattern caused by the random optical center position. To address this challenge, we propose a distortion vector map (DVM) that measures the degree and direction of local distortion. By learning the DVM, the model can independently identify local distortions at each pixel without relying on global distortion patterns. The model adopts a pre-training and fine-tuning training paradigm. In the pre-training stage, it predicts the distortion vector map and perceives the local distortion features of each pixel. In the fine-tuning stage, it predicts a pixel-wise flow map for deviated fisheye image rectification. We also propose a data augmentation method mixing central, deviated, and distorted-free images. Such data augmentation promotes the model performance in rectifying both central and deviated fisheye images, compared with models trained on single-type fisheye images. Extensive experiments demonstrate the effectiveness and superiority of the proposed method.
Related papers
- SimFIR: A Simple Framework for Fisheye Image Rectification with
Self-supervised Representation Learning [105.01294305972037]
We introduce SimFIR, a framework for fisheye image rectification based on self-supervised representation learning.
To learn fine-grained distortion representations, we first split a fisheye image into multiple patches and extract their representations with a Vision Transformer.
The transfer performance on the downstream rectification task is remarkably boosted, which verifies the effectiveness of the learned representations.
arXiv Detail & Related papers (2023-08-17T15:20:17Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - FishFormer: Annulus Slicing-based Transformer for Fisheye Rectification
with Efficacy Domain Exploration [44.332845280150785]
We introduce Fishformer that processes the fisheye image as a sequence to enhance global and local perception.
We tuned the Transformer according to the structural properties of fisheye images.
Our method provides superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-07-05T09:59:32Z) - FisheyeEX: Polar Outpainting for Extending the FoV of Fisheye Lens [84.12722334460022]
Fisheye lens gains increasing applications in computational photography and assisted driving because of its wide field of view (FoV)
In this paper, we present a FisheyeEX method that extends the FoV of the fisheye lens by outpainting the invalid regions.
The results demonstrate that our approach significantly outperforms the state-of-the-art methods, gaining around 27% more content beyond the original fisheye image.
arXiv Detail & Related papers (2022-06-12T21:38:50Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
We propose a novel distortion rectification approach that can obtain more accurate parameters with higher efficiency.
We design a local-global associated estimation network that learns the ordinal distortion to approximate the realistic distortion distribution.
Considering the redundancy of distortion information, our approach only uses a part of distorted image for the ordinal distortion estimation.
arXiv Detail & Related papers (2020-07-21T10:03:42Z) - UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models [8.484676769284578]
We propose a generic scale-aware self-supervised pipeline for estimating depth, euclidean distance, and visual odometry from unrectified monocular videos.
The proposed algorithm is evaluated further on the KITTI rectified dataset, and we achieve state-of-the-art results.
arXiv Detail & Related papers (2020-07-13T20:35:05Z) - Fisheye Distortion Rectification from Deep Straight Lines [34.61402494687801]
We present a novel line-aware rectification network (LaRecNet) to address the problem of fisheye distortion rectification.
Our model achieves state-of-the-art performance in terms of both geometric accuracy and image quality.
In particular, the images rectified by LaRecNet achieve the highest peak signal-to-noise ratio (PSNR) and structure similarity index (SSIM) compared with the groundtruth.
arXiv Detail & Related papers (2020-03-25T13:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.