UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models
- URL: http://arxiv.org/abs/2007.06676v4
- Date: Tue, 6 Jun 2023 14:26:28 GMT
- Title: UnRectDepthNet: Self-Supervised Monocular Depth Estimation using a
Generic Framework for Handling Common Camera Distortion Models
- Authors: Varun Ravi Kumar, Senthil Yogamani, Markus Bach, Christian Witt,
Stefan Milz and Patrick Mader
- Abstract summary: We propose a generic scale-aware self-supervised pipeline for estimating depth, euclidean distance, and visual odometry from unrectified monocular videos.
The proposed algorithm is evaluated further on the KITTI rectified dataset, and we achieve state-of-the-art results.
- Score: 8.484676769284578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classical computer vision, rectification is an integral part of multi-view
depth estimation. It typically includes epipolar rectification and lens
distortion correction. This process simplifies the depth estimation
significantly, and thus it has been adopted in CNN approaches. However,
rectification has several side effects, including a reduced field of view
(FOV), resampling distortion, and sensitivity to calibration errors. The
effects are particularly pronounced in case of significant distortion (e.g.,
wide-angle fisheye cameras). In this paper, we propose a generic scale-aware
self-supervised pipeline for estimating depth, euclidean distance, and visual
odometry from unrectified monocular videos. We demonstrate a similar level of
precision on the unrectified KITTI dataset with barrel distortion comparable to
the rectified KITTI dataset. The intuition being that the rectification step
can be implicitly absorbed within the CNN model, which learns the distortion
model without increasing complexity. Our approach does not suffer from a
reduced field of view and avoids computational costs for rectification at
inference time. To further illustrate the general applicability of the proposed
framework, we apply it to wide-angle fisheye cameras with 190$^\circ$
horizontal field of view. The training framework UnRectDepthNet takes in the
camera distortion model as an argument and adapts projection and unprojection
functions accordingly. The proposed algorithm is evaluated further on the KITTI
rectified dataset, and we achieve state-of-the-art results that improve upon
our previous work FisheyeDistanceNet. Qualitative results on a distorted test
scene video sequence indicate excellent performance
https://youtu.be/K6pbx3bU4Ss.
Related papers
- RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation [88.54817424560056]
We propose a distortion vector map (DVM) that measures the degree and direction of local distortion.
By learning the DVM, the model can independently identify local distortions at each pixel without relying on global distortion patterns.
In the pre-training stage, it predicts the distortion vector map and perceives the local distortion features of each pixel.
In the fine-tuning stage, it predicts a pixel-wise flow map for deviated fisheye image rectification.
arXiv Detail & Related papers (2024-06-27T06:38:56Z) - Möbius Transform for Mitigating Perspective Distortions in Representation Learning [43.86985901138407]
Perspective distortion (PD) causes unprecedented changes in shape, size, orientation, angles, and other spatial relationships in images.
We propose mitigating perspective distortion (MPD) by employing a fine-grained parameter control on a specific family of M"obius transform.
We present a dedicated perspectively distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep learning models against this new dataset.
arXiv Detail & Related papers (2024-03-07T15:39:00Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
We propose a novel distortion rectification approach that can obtain more accurate parameters with higher efficiency.
We design a local-global associated estimation network that learns the ordinal distortion to approximate the realistic distortion distribution.
Considering the redundancy of distortion information, our approach only uses a part of distorted image for the ordinal distortion estimation.
arXiv Detail & Related papers (2020-07-21T10:03:42Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.