論文の概要: FAGhead: Fully Animate Gaussian Head from Monocular Videos
- arxiv url: http://arxiv.org/abs/2406.19070v2
- Date: Fri, 28 Jun 2024 06:47:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 10:50:27.702854
- Title: FAGhead: Fully Animate Gaussian Head from Monocular Videos
- Title(参考訳): FAGhead:モノクロビデオで見るガウシアンな顔
- Authors: Yixin Xuan, Xinyang Li, Gongxin Yao, Shiwei Zhou, Donghui Sun, Xiaoxin Chen, Yu Pan,
- Abstract要約: FAGheadは、モノクロビデオから完全に制御可能な人間の肖像画を可能にする方法である。
従来の3次元形状メッシュ(3DMM)を明示し,中性な3次元ガウス多様体を複素表現で再構成するために最適化する。
アバターのエッジを効果的に管理するために,各画素のアルファ値を監督するアルファレンダリングを導入した。
- 参考スコア(独自算出の注目度): 2.9979421496374683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity reconstruction of 3D human avatars has a wild application in visual reality. In this paper, we introduce FAGhead, a method that enables fully controllable human portraits from monocular videos. We explicit the traditional 3D morphable meshes (3DMM) and optimize the neutral 3D Gaussians to reconstruct with complex expressions. Furthermore, we employ a novel Point-based Learnable Representation Field (PLRF) with learnable Gaussian point positions to enhance reconstruction performance. Meanwhile, to effectively manage the edges of avatars, we introduced the alpha rendering to supervise the alpha value of each pixel. Extensive experimental results on the open-source datasets and our capturing datasets demonstrate that our approach is able to generate high-fidelity 3D head avatars and fully control the expression and pose of the virtual avatars, which is outperforming than existing works.
- Abstract(参考訳): 3次元人間のアバターの高忠実な再構成は、視覚的現実に野生の応用をもたらす。
本稿では,モノクロ映像から人間の肖像画を完全に制御できるFAGheadを紹介する。
従来の3次元形状メッシュ(3DMM)を明示し,中性な3次元ガウス多様体を複素表現で再構成するために最適化する。
さらに,学習可能なガウス点位置を持つポイントベース学習可能表現場 (PLRF) を用いて再構成性能を向上させる。
一方,アバターのエッジを効果的に管理するために,各画素のアルファ値を監督するアルファレンダリングを導入した。
オープンソースデータセットとキャプチャデータセットの大規模な実験結果から、我々のアプローチは高忠実度3Dヘッドアバターを生成し、既存の作業よりも優れた仮想アバターの表現とポーズを完全に制御できることを示した。
関連論文リスト
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
本稿では,GAGAvatar(Generalizable and Animatable Gaussian Head Avatar)を提案する。
我々は、1つの前方通過で1つの画像から3次元ガウスのパラメータを生成する。
提案手法は, 従来の手法と比較して, 再現性や表現精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-10T14:29:00Z) - DEGAS: Detailed Expressions on Full-Body Gaussian Avatars [13.683836322899953]
顔表情の豊かなフルボディアバターに対する3次元ガウススティング(3DGS)に基づくモデリング手法であるDEGASを提案する。
本稿では,2次元の顔と3次元のアバターのギャップを埋めて,2次元の肖像画にのみ訓練された潜在空間を採用することを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:52:03Z) - GPHM: Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction [47.113910048252805]
高忠実度3D人間の頭部アバターは、VR/AR、デジタル人間、映画製作に不可欠である。
近年の進歩は、変形可能な顔モデルを利用して、様々なアイデンティティと表現を表現するアニメーションヘッドアバターを生成している。
本稿では,人間の頭部の複雑さを正確に表現するために,三次元ガウスを用いた3次元ガウスパラメトリックヘッドモデルを提案する。
論文 参考訳(メタデータ) (2024-07-21T06:03:11Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
マルチビュー映像記録から高忠実度制御可能なアバターを作成するためのデータ駆動方式を提案する。
我々は,高効率なレンダリングのための3次元ガウススプラッティングの手法を構築し,点雲のトポロジカルな柔軟性を継承する。
提案手法をNeRSembleデータセット上で評価し,NPGAが従来の自己再現タスクの2.6PSNRよりも有意に優れていたことを示す。
論文 参考訳(メタデータ) (2024-05-29T17:58:09Z) - GVA: Reconstructing Vivid 3D Gaussian Avatars from Monocular Videos [56.40776739573832]
モノクロビデオ入力(GVA)から鮮明な3Dガウスアバターの作成を容易にする新しい手法を提案する。
私たちのイノベーションは、高忠実な人体再構築を実現するという、複雑な課題に対処することにあります。
通常の地図とシルエットを整列させて手足のポーズ精度を向上させるためにポーズ改善手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T14:40:15Z) - Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and
Editing [53.05069432989608]
本稿では,3次元人間の頭部を顕著な柔軟性で生成するための新しい枠組みを提案する。
本手法は,顔の特徴や表情を微妙に編集した多彩でリアルな3次元頭部の作成を容易にする。
論文 参考訳(メタデータ) (2023-12-05T19:05:58Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
一つのビデオから動的に3D映像を映し出すリアルな人間のアバターを作成するための効率的なアプローチを提案する。
GustafAvatarは、公開データセットと収集データセットの両方で検証されています。
論文 参考訳(メタデータ) (2023-12-04T18:55:45Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
本研究では,野生で撮影されたモノクロRGBビデオから高品質な3次元頭部アバターを学習する方法を提案する。
我々のハイブリッドパイプラインは、3DMMの幾何学的先行と動的追跡とニューラルラディアンス場を組み合わせることで、きめ細かい制御とフォトリアリズムを実現する。
論文 参考訳(メタデータ) (2023-04-04T01:10:04Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。